1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
3 years ago
7

A 15.0-μF capacitor is charged by a 130.0-V power supply, then disconnected from the power and connected in series with a 0.280-

mH inductor. Part A Calculate the oscillation frequency of the circuit. Express your answer with the appropriate units.
Physics
1 answer:
SVETLANKA909090 [29]3 years ago
7 0

The resonant frequency of a circuit is the frequency \omega_0 at which the equivalent impedance of a circuit is purely real (the imaginary part is null).

Mathematically this frequency is described as

f = \frac{1}{2\pi}(\sqrt{\frac{1}{LC}})

Where

L = Inductance

C = Capacitance

Our values are given as

C = 15*10^{-6}\mu F

L = 0.280*10^{-3}mH

Replacing we have,

f = \frac{1}{2\pi}(\sqrt{\frac{1}{LC}})

f = \frac{1}{2\pi}(\sqrt{\frac{1}{(15*10^{-6})(0.280*10^{-3})}})

f= 2455.81Hz

From this relationship we can also appreciate that the resonance frequency infers the maximum related transfer in the system and that therefore given an input a maximum output is obtained.

For this particular case, the smaller the capacitance and inductance values, the higher the frequency obtained is likely to be.

You might be interested in
Scientists can use spectral analysis of stars to determine which of the following?
RoseWind [281]
I do believe all of these but core elements can be determined by spectroscopy which includes the use of electromagnetic radiation. Both the surface and core temperature can be measured using light. Surface elements can be found because the absorption lines of different elements in the spectra of the star, but I haven't heard anything about using spectral analysis for core elements.
4 0
3 years ago
Read 2 more answers
Brainliest if right
mixas84 [53]
They traveling at -0.37/ms^
3 0
3 years ago
Can you please answer these ASAP!
SVEN [57.7K]

Answer:

Let's explain this briefly.

Suppose that we have a piece of ice (this is, solid water) now we give energy to the piece of ice, so the temperature of the ice increases. There is a point where the piece of ice will start a change of phase, at this point the temperature of the ice stops increasing because all the energy we give to the ice is used in the change of phase.

Once we have a complete change of phase, the temperature can increase again, and now we will have liquid water.

If we keep increasing the temperature we will see this happen again, when we have the transition from liquid to gas.

(and a similar thing happen when we have a material in a given phase and we remove heat from the material).

In the images we can see the different changes of phase of water.

1) In the first image we can see the circle in a part where the temperature is constant, so the temperature does not change in this part, which means that there is a change of phase happening.

2) Here we have the circle in a diagonal line, so here the temperature is changing, meaning that we have an increase of temperature in this region.

3) Here we want to know what the x-axis represents, this should rerpesent the energy that is being given to the material (so in some parts we see that the temperature increases and in other parts we see that the material changes of phase)

Then here the correct option is heat over time.

4) The freezing point is the temperature in which the change of phase from liquid to solid happens (or solid to liquid).

In the graph we can see that this change of phase happens at the temperature T = -210°C

Then the correct option is -210°C (The last option)

4 0
3 years ago
A flat sheet of ice has a thickness of 2.20 cm. It is on top of a flat sheet of crystalline quartz that has a thickness of 1.50
kolezko [41]

Answer:

Distance_{vaccum}=5.19cm

Explanation:

The speed of light in these mediums shall be lower than that in vacuum thus the total time light needs to cross both the media are calculated as under

Total time = Time taken through ice + Time taken through quartz

Time taken through ice = Thickness of ice / (speed of light in ice)

T_{ice}=\frac{2.20\times 10^{-2} \times \mu _{ice}}{V_{vaccum}}

T_{quartz}=\frac{1.50\times 10^{-2} \times \mu _{quartz}}{V_{vaccum}}

Thus in the same time the it would had covered a distance of

Distance_{vaccum}=Totaltime\times V_{vaccum}\\\\Distance_{vaccum}=10^{-2}[2.20\mu _{ice+1.50\mu _{quartz}}]

we have

\mu _{ice}=1.309\\\\\mu _{quartz}=1.542

Applying values we have

Distance_{vaccum}=10^{-2}[2.20\times 1.309+1.50\times 1.542]

Distance_{vaccum}=5.19cm

6 0
4 years ago
A satellite in outer space is moving at a constant velocity of 21.4 m/s in the y direction when one of its onboard thruster turn
kumpel [21]

Answer:

a) The magnitude of the satellite's velocity when the thruster turns off is approximately 24.177 meters per second.

b) The direction of the satellite's velocity when the thruster turns off is approximately 62.266º.

Explanation:

Statement is incomplete. The complete description is now described below:

<em>A satellite in outer space is moving at a constant velocity of 21.4 m/s in the y direction when one of its onboard thruster turns on, causing an acceleration of 0.250 m/s2 in the x direction. The acceleration lasts for 45.0 s, at which point the thruster turns off. </em>

<em>(a) What is the magnitude of the satellite's velocity when the thruster turns off</em>

<em>(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis. ° counterclockwise from the +x-axis</em>

Let be x and y-directions orthogonal to each other and the satellite is accelerated uniformly from rest in the +x direction and moves at constant velocity in the +y direction. The velocity vector of the satellite (\vec{v}_{S}), measured in meters per second, is:

\vec{v}_{S} = (v_{o,x}+a_{x}\cdot t)\,\hat{i}+v_{y}\,\hat{j}

Where:

v_{o,x} - Initial velocity in +x direction, measured in meters per second.

a_{x} - Acceleration in +x direction, measured in meter per square second.

t - Time, measured in seconds.

v_{y} - Velocity in +y direction, measured in meters per second.

If we know that v_{o,x} = 0\,\frac{m}{s}, a_{x} = 0.250\,\frac{m}{s^{2}}, t = 45\,s and v_{y} = 21.4\,\frac{m}{s}, the final velocity of the satellite is:

\vec{v}_{S} = \left[0\,\frac{m}{s}+\left(0.250\,\frac{m}{s^{2}} \right)\cdot (45\,s) \right]\,\hat{i}+\left(21.4\,\frac{m}{s} \right)\,\hat{j}

\vec{v_{S}} = 11.25\,\hat{i}+21.4\,\hat{j}\,\,\left[\frac{m}{s} \right]

a) The magnitud of the satellite's velocity can be found by the resource of the Pythagorean Theorem:

\|\vec {v}_{S}\| = \sqrt{\left(11.25\,\frac{m}{s} \right)^{2}+\left(21.4\,\frac{m}{s} \right)^{2}}

\|\vec{v}_{S}\| \approx 24.177\,\frac{m}{s}

The magnitude of the satellite's velocity when the thruster turns off is approximately 24.177 meters per second.

b) The direction of the satellite's velocity when the thruster turns off is determined with the help of trigonometric functions:

\tan \alpha = \frac{v_{y}}{v_{x}} = \frac{21.4\,\frac{m}{s} }{11.25\,\frac{m}{s} }

\tan \alpha = 1.902

\alpha = \tan^{-1}1.902

\alpha \approx 62.266^{\circ}

The direction of the satellite's velocity when the thruster turns off is approximately 62.266º.

4 0
3 years ago
Other questions:
  • which organelle in the plant cell would mainly help the cell tack in water or get rid of water just like the potato did? this is
    14·1 answer
  • Two children playing on a frictionless garden gate invent a new game called "gate". The idea is that they will get on opposite s
    10·1 answer
  • A wooden ring whose mean diameter is 15.0 cm is wound with a closely spaced toroidal winding of 555 turns. Compute the magnitude
    11·1 answer
  • To test the performance of its tires, a car
    14·1 answer
  • A 1 kg ball and a 10 kg ball are dropped from a height of 10 m at the same time. In the absence of air resistance,
    12·1 answer
  • How much positive and negative charge is there in cup of water?
    13·1 answer
  • Images formed by a convex mirror are always ​
    10·1 answer
  • Can a physical guantity have unit but is dimensionless ?
    5·1 answer
  • When is the object at rest? in constant speed? accelerating?​
    9·1 answer
  • QUICK HELP ILL MARK U BRAINLIEST
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!