Total distance = 36500 m
The average velocity = 19.73 m/s
<h3>Further explanation</h3>
Given
vo=initial velocity=0(from rest)
a=acceleration= 1 m/s²
t₁ = 20 s
t₂ = 0.5 hr = 1800 s
t₃= 30 s
Required
Total distance
Solution
State 1 : acceleration


State 2 : constant speed

State 3 : deceleration


Total distance : state 1+ state 2+state 3

the average velocity = total distance : total time

Answer:
Mechanical Energy
Explanation:
The sum of kinetic energy and potential energy of an object is its total mechanical energy.
Answer: You do not specify what is being asked for. ∆E? ∆H?
∆E = (430 - 238) J = 192 J
∆H = 430 J
Explanation:
If asked for the value of ∆H the answer is simply the change in heat, and in the question, it states introduction of 430 J of heat is causing the system to expand.
Therefore ∆H = 430 J
If asked for ∆E, we know that ∆E = ±q (heat) + work (-P∆V) = ±q + w
The question states that 238 J of work are done AND the system expanded
(work is negative because expansion means work is done BY the system, releasing energy/heat... Conversely, if the system were compressed, work is done ON the system, absorbing heat/energy)
Therefore, ∆E = (430 - 238) J = 192 J
Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
Answer: (a) Z-score are 1 and -1.2 for northern and southern regions, respectively.
Explanation: <u>Z-score</u> is how many standard deviations a data is from the population mean or how far a data point is from the mean.
The z-score is calculated by the following:

where
x is the data point
μ is population mean
σ is standard deviation
For the <u>northern</u> <u>region</u> birds:
μ = 10, σ = 3, x = 13

z = 1
The z-score for birds living in the northern region is 1, which means it is 1 standard deviation <em>above the mean</em>.
For the southern region:
μ = 16, σ = 2.5, x = 13

z = -1.2
The z-score for southern living birds is -1.2, meaning it is 1.2 standard deviations <em>below the mean</em>.