Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!
Answer:
yo that's too long you should try and my it shorter
<h3>
Answer:</h3>
7.182K
<h3>
Explanation:</h3>
From the question we are given;
- Initial temperature, T1 = 275 K
- Final temperature, T2 = 395 K
- Initial volume, V1 = 5 L
We are required to calculate the final volume, V2
- Charles's law is the law that relates the volume of a gas and its temperature.
- It states that the volume of a fixed mass of a gas and its absolute temperature are directly proportional at a constant pressure.
- Therefore;

To calculate, V2 we rearrange the formula;



Therefore, the ending volume will be 7.182K
Answer:
3.4=340,000,000 hope this will help.
Answer:
γ−Hydrogen is easily replacable during bromination reaction in presence of light , because Allylic substitution is being preferred.
Explanation:
that's all