A million years old
Duhhhh
Answer:

Explanation:
Hello,
In this case, by knowing the given reference reactions, one could rearrange them as follows:


Subsequently, to obtain the main reaction, we add the aforementioned reference rearranged reactions as shown below (just as reference):

Consequently, the equilibrium constant is computed as:
![Kp=\frac{[N_2][O_2]}{[NO]^2} * \frac{[NO_2]^2}{[N_2][O_2]^2} =Kp_2*Kp_3=4.35x10^{18}*7.056x10^{-13}=3.07x10^6](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BN_2%5D%5BO_2%5D%7D%7B%5BNO%5D%5E2%7D%20%2A%20%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%5E2%7D%20%3DKp_2%2AKp_3%3D4.35x10%5E%7B18%7D%2A7.056x10%5E%7B-13%7D%3D3.07x10%5E6)
Best regards.
Explanation:
Potential energy is the the relationship between work done height mass and acceleration due to gravity, because of this some objects also experience kinetic energy due to the factors mentioned above
From the calculation, the pH of the solution after dilution is 3.
<h3>What is the pH?</h3>
The pH is the hydrogen ion concentration of the solution. Now we know that;
C1 = 0.010 m
V1 = 10.0 ml
V2 = 10.0 ml + 100.0 ml = 110 ml
C2 = ?
C1V1 = C2V2
C2 = C1V1 /V2
C2 = 0.010 m * 10.0 ml / 110 ml
C2 = 0.00091 M
pH = -log[0.00091 M]
pH = 3
Learn more about pH:brainly.com/question/15289741
#SPJ1