1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
Answer:
Yes, if the system has friction, the final result is affected by the loss of energy.
Explanation:
The result that you are showing is the conservation of mechanical energy between two points in the upper one, the energy is only potential and the lower one is only kinetic.
In the case of some type of friction, the change in energy between the same points is equal to the work of the friction forces
= ΔEm
=
-Em₀
As we can see now there is another quantity and for which the final energy is lower and therefore the final speed would be less than what you found in the case without friction.
=
+ Em₀
Remember that the work of the rubbing force is negative, let's write the work of the rubbing force explicitly, to make it clearer
½ m v² = -fr d + mgh
v = √(-fr d 2/m + 2 gh)
v = √ (2gh - 2fr d/m)
Now it is clear that there is a decrease in the final body speed.
Consequently, if the system has friction, the final result is affected by the loss of energy.
The 2nd has the most porosity
Infiltration
That's all I can answer for you. Hope it helps
Answer:
the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Explanation:
a) Kinetic energy of block = potential energy in spring
½ mv² = ½ kx²
Here m stands for combined mass (block + bullet),
which is just 1 kg. Spring constant k is unknown, but you can find it from given data:
k = 0.75 N / 0.25 cm
= 3 N/cm, or 300 N/m.
From the energy equation above, solve for v,
v = v √(k/m)
= 0.15 √(300/1)
= 2.598 m/s.
b) Momentum before impact = momentum after impact.
Since m = 1 kg,
v = 2.598 m/s,
p = 2.598 kg m/s.
This is the same momentum carried by bullet as it strikes the block. Therefore, if u is bullet speed,
u = 2.598 kg m/s / 8 × 10⁻³ kg
= 324.76 m/s.
Hence, the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Answer:
she used force to swing her ball all way back
Explanation: