Answer:
O Adenine and guanine
Explanation:
i think tell me if im rong
Finding acceleration= final velocity-initial velocity/ time taken (or A= V-U/T)
Final speed= 2m
Initial speed= 0m
Time taken= 2 seconds
2-0/2 so it’ll be 1m/s
2-0=0
2/2=
Answer:
D
friction acts in the opposite direction of motion but does not affect the motion of the object
a) we can answer the first part of this by recognizing the player rises 0.76m, reaches the apex of motion, and then falls back to the ground we can ask how
long it takes to fall 0.13 m from rest: dist = 1/2 gt^2 or t=sqrt[2d/g] t=0.175
s this is the time to fall from the top; it would take the same time to travel
upward the final 0.13 m, so the total time spent in the upper 0.15 m is 2x0.175
= 0.35s
b) there are a couple of ways of finding thetime it takes to travel the bottom 0.13m first way: we can use d=1/2gt^2 twice
to solve this problem the time it takes to fall the final 0.13 m is: time it
takes to fall 0.76 m - time it takes to fall 0.63 m t = sqrt[2d/g] = 0.399 s to
fall 0.76 m, and this equation yields it takes 0.359 s to fall 0.63 m, so it
takes 0.04 s to fall the final 0.13 m. The total time spent in the lower 0.13 m
is then twice this, or 0.08s
First, we need to know the amounts of the elements in the compound.
Tin (Sn)= 5.28 g
Fluorine (F) = 8.65 - 5.28 = 3.37 g
Convert these to units of moles by dividing the molar masses.
Tin (Sn)= 5.28 g / 118.71 g/mol = 0.044 mol
Fluorine (F) = 3.37 g / 19.00 g/mol = 0.177 mol
Divide both by the least number of moles of the two.
Tin (Sn)= 0.044 mol / 0.044 mol = 1
Fluorine (F) = 0.177 mol / 0.044 mol = 4
Therefore, the empirical formula would be:
SnF4