I believe the answer is
At the moment it is the best way of explaining our scientific knowledge.
This question is more for Biology than Chemistry, but the role of producers is to make energy (food) to be consumed. In a pyramid diagram, the producers would be at the bottom. Now going up the pyramid, the primary conumers are the first to consume producers and obtain energy from them. As you go up the pyramid, the secondary consumers will consume the primary consumers as a way to obtain energy, and the same goes for tertiary consumers towards secondaries.
As you go up the energy pyramid, you will notice a trend that there is less energy being obtained from each consumer. In other words, the producers will ALWAYS have more energy than the tertiary consumers.
I hope this answers your question.
The AP Biology teacher is measuring out 638.0 g of dextrose (C6H12O6) for a lab the moles of dextrose is this equivalent to is 3.6888 moles.
<h3>What are moles?</h3>
A mole is described as 6.02214076 × 1023 of a few chemical unit, be it atoms, molecules, ions, or others. The mole is a handy unit to apply due to the tremendous variety of atoms, molecules, or others in any substance.
To calculate molar equivalents for every reagent, divide the moles of that reagent through the moles of the restricting reagent. The calculation is follows:
- 655/12 x 6 + 12+ 16 x 6
- = 655/ 180 = 3.6888 moles.
Read more about moles:
brainly.com/question/24322641
#SPJ1
Answer:
Yes
Explanation:
They are a unique type of eukaryote because they lack an important organelle: mitochondria. Mitochondria are essential for producing cellular energy in most eukaryotic cells. However, due to its habitat, it is able to acquire energy from a process called sulfur mobilization.
They are significant because they challenge the idea that eukaryotes need mitochondria to be classified as eukaryotic. However, they have other membrane-bound organelles such as a nucleus and Golgi apparatus, meaning they remain eukaryotic.
Research suggest they lost their mitochondria over time, rather than never having had them throughout their ancestry.
Because of all these reasons, they still meet the definition of a eukaryote.
I believe the answer you are looking for is Static Friction. Static Friction is the force that holds an object in place until it starts to move. Then it switches to rolling friction.
For example, if you have a 1/2 ton truck sitting in front of you and the truck is in neutral. (meaning it can roll if pushed). The truck is extremely hard to move at first. That is because static friction is holding it in place until the amount of force exceeds the limit of static friction.
So if we continue to push at the truck and you feel it starting to move, then once it starts moving it is much easier to push, that is because we moved past static friction to rolling friction. Rolling friction is what helps slow things down. If you roll a ball across a carpet floor it eventually comes to a stop.