Answer:
3.75 MeV
Explanation:
The energy of the photon can be given in terms of frequency as:
E = h * f
Where h = Planck's constant
The frequency of the photon is 6 * 10^20 Hz.
The energy (in Joules) is:
E = 6.63 x10^(-34) * 6 * 10^(20)
E = 39.78 * 10^(-14) J = 3.978 * 10^(-13) J
We are given that:
1 eV = 1.06 * 10^(-19) Joules
This means that 1 Joule will be:
1 J = 1 / (1.06 * 10^(-19)
1 J = 9.434 * 10^(18) eV
=> 3.978 * 10^(-13) J = 3.978 * 10^(-13) * 9.434 * 10^(18) = 3.75 * 10^(6) eV
This is the same as 3.75 MeV.
The correct answer is not in the options, but the closest to it is option C.
Answer:
Power is the rate which work is done.
Explanation:
<em>Power</em> is the rate which work is done. Power is measured in watts.
<em>Work</em> is the use of force to move an object. Work is measured in joules
Answer:
a) The shear stress is 0.012
b) The shear stress is 0.0082
c) The total friction drag is 0.329 lbf
Explanation:
Given by the problem:
Length y plate = 2 ft
Width y plate = 10 ft
p = density = 1.938 slug/ft³
v = kinematic viscosity = 1.217x10⁻⁵ft²/s
Absolute viscosity = 2.359x10⁻⁵lbfs/ft²
a) The Reynold number is equal to:

The boundary layer thickness is equal to:
ft
The shear stress is equal to:

b) If the railing edge is 2 ft, the Reynold number is:

The boundary layer is equal to:

The sear stress is equal to:

c) The drag coefficient is equal to:

The friction drag is equal to:

Answer:
mass = 9.7 kg
Explanation:
As we know that when object is at rest on the ground of flat base then we will have

so from here

now we have
N = 95 Newton
now from above equation we will have



Answer:
20n
Explanation:
60n - 40n = efficiency of pulley system
20n = efficiency of pulley system