1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
9

What is the radius of a bobsled turn banked at 75.0^\circ75.0 ​∘ ​​ and taken at 30.0 m/s, assuming it is ideally banked?

Physics
1 answer:
Contact [7]3 years ago
4 0

Banking angle is the angle between the normal horizontal path (N) and the curved banked path. The angle of banking of a curved path is defined as the angle through which the outer edge of the road is raised over the inner edge.

It is calculated as:

tan\theta = \frac{v^2}{rg}

Here,

v = Linear velocity of object

r = Radius of the curved path

a_c = Acceleration due to gravity

Rewriting the equation to solve for the radius we have that

r=\frac{v^2}{gtan\theta}

r = \frac{30}{(9.8)(tan 75\°)}

r = 24.6m

Therefore the radius of a bobsled turn banked at 75° taken at 30m/s is 24.6m

You might be interested in
If the Earth and distant stars were stationary (motionless) in space, what would we observe about the wavelength from these star
torisob [31]
There's no such thing as "stationary in space".  But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>

</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.

</span>In order to decide what's actually happening, and how that star is moving, 
the trick is:  How do we know the actual wavelengths the star emitted ?


 
7 0
3 years ago
A horizontal spring with stiffness 0.4 N/m has a relaxed length of 11 cm (0.11 m). A mass of 21 grams (0.021 kg) is attached and
riadik2000 [5.3K]

Answer:

0.6983 m/s

Explanation:

k = spring constant of the spring = 0.4 N/m

L₀ = Initial length = 11 cm = 0.11 m

L = Final length = 27 cm = 0.27 m

x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m

m = mass of the mass attached = 0.021 kg

v = speed of the mass

Using conservation of energy

Kinetic energy of mass = Spring potential energy

(0.5) m v² = (0.5) k x²

m v² = k x²

(0.021) v² = (0.4) (0.16)²

v = 0.6983 m/s

5 0
3 years ago
A pendulum takes 10 seconds to swing through 2 complete cycles what is it’s period and frequency
Orlov [11]

its period should be the amount it takes to cycle from cycle to cycle so it would be 10 and your frequency would have to be calculated by taking 10 and dividing by 2 since that is how many cycles you have done so your frequency is 5


plz mark me brainliest

7 0
3 years ago
Read 2 more answers
A bullet of 10g strikes a sand bag at a speed of 100 m/s and gets embedded after travelling
Tasya [4]

Answer:

Solving for time :

(There are 4 formulas from linear motion. These formulas are very helpful as it allows us to prevent complicated calculations. Choose among the four that has : 1. The most constants known

2. The unknown constant that we want to solve)

s = (1/2)(u+v)t <--- one of the formulas

from linear motion

s (distance) = 0.05m

u (initial velocity) = 100m/s

v (final velocity) = 0 m/s (it stops)

t (time taken for change in velocity) = to be found

0.05 = (1/2)(100+0)t

t = 0.001 seconds

Solving for the resistant force :

Since the bullet hits the bag with an impulsive force and stops, the force that stops the bullet is the resistant force.

When the bullet stops :

F net = 0

F r = F imp

F r = (mu -mv)/t

F r = (0.01x100-0.01x0)/0.001

F r = 1/0.001

F r = 1000N

4 0
3 years ago
a 2000 kg truck is traveling at a velocity of 30 m/s. What velocity must a 1000 kg car have in order to have the same momentum a
Molodets [167]

The car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.

Answer:

Explanation:

Momentum is measured as the product of mass of object with the velocity attained by that object.

Momentum of 2000 kg truck = Mass × Velocity

Momentum of 2000 kg truck = 2000×30 = 60000 N

Similarly, the momentum of 1000 kg car will be 1000× velocity of the 1000 kg car.

Since, it is stated that momentum of 2000 kg truck is equal to the momentum of 1000 kg of car, then the velocity of 1000 kg of car can be determined by equating the momentum of car and truck.

Momentum of 2000 kg truck = Momentum of 1000 kg car

60000=1000×velocity of 1000 kg car

Velocity of 1000 kg car = 60000/1000=60 m/s

So, the car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.

4 0
3 years ago
Other questions:
  • . A grindstone increases in angular speed from 4.00 rad/s to 12.00 rad/s in 4.00 s. Through what angle does it turn during that
    5·1 answer
  • he acceleration due to gravity on the surface of Mars is about one third the acceleration due to gravity on Earth’s surface. The
    5·1 answer
  • what might happen if an automobile manufacturer began making and selling cars based on a prototype that went through only one en
    10·1 answer
  • Which is the SI base unit for distance?
    5·1 answer
  • Moira is drawing the electric field lines around a pair of charges. One charge is positive, and the other charge is negative.
    5·1 answer
  • Which of the following is a characteristic of digital data?
    15·1 answer
  • Ordinary kriging method assume that​
    15·1 answer
  • The element radon is at the opposite end of the range, with the lowest specific heat of all naturally occurring elements. Radon'
    9·1 answer
  • Please help I will fail
    5·1 answer
  • A person stands 6.00 m from a speaker, and 8.00 m from an identical speaker. What is the wavelength of the first (n=1) interfere
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!