Answer:
7.50 m/s^2
Explanation:
The period of a pendulum is given by:
(1)
where
L = 0.600 m is the length of the pendulum
g = ? is the acceleration due to gravity
In this problem, we can find the period T. In fact, the frequency is equal to the number of oscillations per second, so:

And the period is the reciprocal of the frequency:

And by using this into eq.(1), we can find the value of g:

Answer:
357.6g
Explanation:
Given parameters:
Density = 12.459g/cm³
Volume of metal = 28.7cm³
Unknown:
Mass of metal = ?
Solution:
The density of a substance is its mass per unit volume.
To find the mass;
Mass of metal = density x volume
Now insert the parameters and solve;
Mass of metal = 12.459 x 28.7 = 357.6g
When the frequency decreases the wavelength is further apart. When it increases its closer together. Think about a flat line when the frequency is low the wavelengths are wider. When its a high frequency the squiggly lines on the moniter are taller and thinner so the wavelengths are not as wide and not that far from each other depending on how high the frequency is.
It makes the data thet they collect more reliable so if they need the data again, they have already tested it a few times so therefor they know that it is right.
'C' is the only true statement on the list.
Step-up voltage transformers have a lower number of turns
in the primary than in the secondary winding.