100 meters in 9.92 seconds,
=distance/time
=100m/9.92s
=10.0806 m/s
Answer:
The work done shall be 14715 Joules
Explanation:
The work done by a force 'F' in a displacement 'dy' is given by
At any position 'y' the weight shall be sum of weft of water and weight of string
Thus applying values we get
Components connected in series are connected along a single path, so the same current flows through all of the components. If the light bulbs are connected in parallel, the currents through the light bulbs combine to form the current in the battery, while the voltage drop is across each bulb and they all glow.
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Answer:
11700j
Explanation:
add the two because the plate has to maintain the temp.
2700+9000=11700