Da Vinci was fascinated by how timepieces operate. Based on one of his sketches, it uses the laws of motion and a vertical "flying" pendulum escapement to keep accurate time.
The pendulum's weights, in a bucket suspended from a crane-style arm, act as the clock's power source. The weights propel the pendulum from vertical post to vertical post. As it "flies" it turns precision gears, which in turn keep time. To speed up or slow the clock, adjust the weight-balance of the pendulum by adding or removing weights.
Answer:Respiration of carbon dioxide by plant roots can lead to the formation of carbonic acid which can chemically attack rocks and sediments and help to turn them into soils. There are a whole range of weathering processes at work near the surface of the soil, acting together to break down rocks and minerals to form soil.
I hope this is helpful
<span>Calcium - alkali earth metals is the answer</span>
According to the second law of thermodynamics,
the answer is
<span>4. The entropy of the universe is increasing. </span>
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N