<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>
I think its a tbh bc it seems to be the best answer out of a b c and d
Answer:
A) The wave that travels through the rail reaches the microphone first.
B) separation in time between the arrivals of the two pulses is 0.01539 seconds.
Explanation:
Detailed explanation and calculation is shown in the image below
Radio waves in a vacuum travel at the speed of light because they are a type of electromagnetic radiation like a light has been measured as traveling at 3×10^8 m/s in a vacuum.
Charged particles that are accelerating, like time-varying electric currents, are what produce radio waves. Radio and television signals are transmitted using radio waves, and microwaves used in radar and microwave ovens are also radio waves. Radio waves are emitted by a lot of celestial bodies, including pulsars. High RF exposure levels have the potential to heat biological tissue and raise body temperature. The body's inability to handle or remove the extra heat that could be generated by high RF exposure in humans could result in tissue damage.
To learn more about radio waves please visit -
brainly.com/question/13989450
#SPJ1
Answer:
Explanation:
doubling the speed will have a greater impact on kinetic energy as KE is a product of mass and the square of velocity.
KE = ½mv²
Base KE = ½(0.005)2.0² = 0.01 J
doubling the mass
KE = ½(0.010)2.0² = 0.02 J
doubling the velocity
KE = ½(0.005)4.0² = 0.04 J