The bowling ball is at rest, so it only has gravitational potential energy.
Ug = mgy
Ug = (2)(9.8)(40) = 784 J
Need any more help?
Answer:
0.0257259766982 m
Explanation:
= Atmospheric pressure = 101325 Pa
= Initial diameter = 1.5 cm
= Final diameter
= Density of water = 1000 kg/m³
h = Depth = 40 m
The pressure is

From ideal gas law we have

The diameter of the bubble is 0.0257259766982 m
Since it was stated that it must move at constant
velocity, so the only force it must overpower is the frictional force.
So the equation is:
F cos θ = Ff
F cos 36 = 65 N
F = 80.34 N
<span>So the nurse must exert 80.34 N of force</span>
The area of a triangle is found by multiplying the height of the triangle by the length of the base and dividing them both by 2. The length of the shorter side in the equation is useless information, so just multiply 39 by 25 and divide that by 2. A=487.5 sq ft. Also, that's a pretty big kite.
Answer:
β = 114 db
Explanation:
The intensity of sound in decibles is
β = 10 log 
in most cases Io is the hearing threshold 1 10-12 W / cm²
let's calculate the intensity of each instrument
I / I₀ = 10 (β / 10)
I = I₀ 10 (β / 10)
trumpet
I1 = 1 10⁻¹² 10 (94/10)
I1 = 2.51 10⁻³ / cm²
Thrombus
I2 = 1 10⁻¹² 10 (107/10)
I2 = 5.01 10-2 W / cm²
low
I3 =1 1-12 (113/10) W/cm²
I3 = 1,995 10-1 W / cm²
when we place the three instruments together their sounds reinforce
I_total = I₁ + I₂ + I₃
I_ttoal = 2.51 10-3 + 5.01 10-2 + 1.995 10-1
I_total = 0.00251 + 0.0501 + 0.1995
I_total = 0.25211 W / cm²
let's bring this amount to the SI system
β = 10 log (0.25211 / 1 10⁻¹²)
β = 114 db