The color components that will have the lowest index of refraction will be orange.
Answer: 288.8 m
Explanation:
We have the following data:
is the time it takes to the child to reach the bottom of the slope
is the initial velocity (the child started from rest)
is the angle of the slope
is the length of the slope
Now, the Force exerted on the sled along the ramp is:
(1)
Where
is the mass of the sled and
its acceleration
In addition, if we draw a free body diagram of this sled, the force along the ramp will be:
(2)
Where
is the acceleration due gravity
Then:
(3)
Finding
:
(4)
(5)
(6)
Now, we will use the following kinematic equations to find
:
(7)
(8)
Where
is the final velocity
Finding
from (7):
(9)
(10)
Substituting (10) in (8):
(11)
Finding
:

In technical terms, every coil of wire increases the "magnetic flux density" (strength) of your magnet.
So it's A (magnetic field increase)
Answer:
0.28 m
Explanation:
The following data were obtained from the question:
Force (F) = 5×10¯⁶ N
Charge 1 (q₁) = 6.7×10¯⁹ C
Charge 2 (q₂) = 6.7×10¯⁹ C
Electrical constant (K) = 9×10⁹ Nm²C¯²
Distance apart (r) =?
Thus, the distance between the two charges can be obtained as follow:
F = Kq₁q₂/r²
5×10¯⁶ = 9×10⁹ × 6.7×10¯⁹ × 6.7×10¯⁹/r²
5×10¯⁶ = 4.0401×10¯⁷ / r²
Cross multiply
5×10¯⁶ × r² = 4.0401×10¯⁷
Divide both side by 5×10¯⁶
r² = 4.0401×10¯⁷ / 5×10¯⁶
Take the square root of both side
r = √(4.0401×10¯⁷ / 5×10¯⁶)
r = 0.28 m
Therefore, the distance between the two charges is 0.28 m
Answer:
2) Signal #2 is a digital signal that transmits signals in segments/intervals.
Explanation:
Signals are form of information propagating from the source to a display unit for appropriate interpretation. It can be either in a digital or analogue form.
A digital signal is a definite signal which is discrete in time and amplitude. It is mostly in the form of codes obtained from set of values. Graphically it transmits in the form of 1 and 0, showing a point of maximum amplitude (1) and minimum amplitude (0).
Analog signal is continuous signal describing the variation of two variables with respect to time.