My answer i believe is simply 250 Hz, because sounds or vibrations travel in 1 cycle/second, meaning the number of cycles, in your case 250, divided by the time,1 second, will ultimately be 250 Hertz. For every Cycle/second it will equal 1 Hz, so 250/1 = 250Hz
The Boiling point,melting point, surface tension and viscousity will increase while the Vapor pressure will decrease.
<h3 /><h3>What are intermolecular forces?</h3>
Intermolecular forces are the forces that bind two molecules together. Physical properties are affected by the strength of intermolecular forces
An increase in the strength of intermolecular forces increases will lead to an increase in force applied to break the barriers posed by the strength of the molecules.
This increased intermolecular strength will cause a rise in boiling point,melting point, viscousity and surface tension.
The Vapor pressure reduces with increasing intermolecular strength. Vapor pressure is the amount of vapor that is equilibrium with its own liquid or solid. Hence,with increasing intermolecular strength the amount of vapor that is in equilibrium with its own liquid will reduce.
To know more about intermolecular forces follow
brainly.com/question/13588164
#SPJ4
Answer:
2 m/s
Explanation:
From the conservation of momentum, the initial momentum of the system must be equal to the final momentum of the system.
Let the 10.00 kg mass be
and the 12.0 kg mass be
. When they collide and stick, they have a combined mass of
.
Momentum is given by
. Set up the following equation:
, where
is the desired final velocity of the masses.
Call the right direction positive. To indicate the 12.0 kg object is travelling left, its velocity should be substitute as -8.00 m/s.
Solving yields:

Average speed = (total distance covered) / (time to cover the distance)
Total distance = (80m) + (125m) + (45m) = 250 meters
Overall time = 10 minutes
Average speed = (250 meters) / (10 minutes)
<em>Average speed = 25 meters/minute </em>
Since we're only looking for average speed and not velocity, we don't care about any of the directions, and we don't need to calculate Mary's displacement.
Answer:
Magnetic force, F = 0.262 N
Explanation:
It is given that,
Magnetic field of an electromagnet, B = 0.52 T
Length of the wire, 
Current in the straight wire, i = 10.5 A
Let F is the magnitude of force is exerted on the wire. The magnetic force acting on an object of length l is given by :


F = 0.262 N
So, the magnitude of force is exerted on the wire is 0.262 N.