Answer:
5.571 sec
Explanation:
angular frequency = √ (k/m) = √ (49.3 / 5) = 3.14 rad/s
Period To = 2π / angular frequency
Period To = 2π/3.14 = 2 × 3.14 / 3.142 = 2.00 sec which you got
T measured by the observer = To / (√ (1 - (v²/c²))) = 2 / √( 1 - 0.871111) = 2 / 0.35901 = 5.571 sec
t=2.00/(1-√((2.80*10^8)^2/(3.00*10^8)^2))= should have been ( To / (√ (1 - (v²/c²))). where To = 2.00 sec
Answer:
<em>2.753*10^-11N</em>
Explanation:
According to Newton's law of gravitation, the force between the masses is expressed as;
F = GMm/d²
M and m are the distances
d is the distance between the masses
Given
M = 3.71 x 10 kg
m = 1.88 x 10^4 kg
d = 1300m
G = 6.67 x 10-11 Nm²/kg
Substitute into the formula
F = 6.67 x 10-11* (3.71 x 10)*(1.88 x 10^4)/1300²
F = 46.52*10^(-6)/1.69 * 10^6
F = 27.53 * 10^{-6-6}
F = 27.53*10^{-12}
F = 2.753*10^-11
<em>Hence the gravitational force between the asteroid is 2.753*10^-11N</em>
<em></em>
Answer:
To determine the volume of a given beaker/calorimeter by measuring its internal diameter and depth with vernier calipers. A vernier caliper is a measuring instrument with two scales: a main scale and a vernier scale that slides over the main scale.
Explanation:
Answer:
1. greater
2. direct
3. smaller
4. inverse
Explanation:
The speed of sound in water is greater than in air; hence for the same frequency the sound wavelength in water is <u>greater </u>than in air (for the given frequency the wavelength is in the <u>direct </u>proportion with the speed of sound).
To "see" an object via the echolocation creature needs to use sound with the wavelength <u>smaller </u>than the size of an object viewed.
That means to "see" objects of the same size dolphin and bat need to use ultrasound of the same wavelength, hence dolphin needs to use higher frequency (for the given speed of sound the wavelength is in <u>inverse </u>proportion with the frequency).
INDUCTION MOTOR:-
Speed:-Less speed range than PMAC motors • Speed range is a function of the drive being used — to 1,000:1 with an encoder, 120:1 under field-oriented control
Reliability:-Waste heat is capable of degrading insulation essential to motor operation • Years of service common with proper operation
Power density:-Induction produced by squirrel cage rotor inherently limits power density
Accuracy:-Flux vector and field-oriented control allows for some of accuracy of servos
Cost:-Relatively modest initial cost; higher operating costs
PERMANENT MAGNET MORTOR:-
speed:-VFD-driven PMAC motors can be used in nearly all induction-motor and some servo applications • Typical servomotor application speed — to 10,000 rpm — is out of PMAC motor range
Reliability:-Lower operating temperatures reduces wear and tear, maintenance • Extends bearing and insulation life • Robust construction for years of trouble-free operation in harsh environments.
power density:-Rare-earth permanent magnets produce more flux (and resultant torque) for their physical size than induction types.
Accuracy:-Without feedback, can be difficult to locate and position to the pinpoint accuracy of servomotors
<span>Cost:-Exhibit higher efficiency, so their energy use is smaller and full return on their initial purchase cost is realized more quickly</span>