Explanation:
Given that,
Mass of a freight car, 
Speed of a freight car, 
Mass of a scrap metal, 
(a) Let us assume that the final velocity of the loaded freight car is V. The momentum of the system will remain conserved as follows :

So, the final velocity of the loaded freight car is 0.182 m/s.
(b) Lost on kinetic energy = final kinetic energy - initial kinetic energy
![\Delta K=\dfrac{1}{2}[(m_1+m_2)V^2-m_1u_1^2)]\\\\=\dfrac{1}{2}\times [(30,000+110,000 )0.182^2-30000(0.85)^2]\\\\=-8518.82\ J](https://tex.z-dn.net/?f=%5CDelta%20K%3D%5Cdfrac%7B1%7D%7B2%7D%5B%28m_1%2Bm_2%29V%5E2-m_1u_1%5E2%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%2830%2C000%2B110%2C000%20%290.182%5E2-30000%280.85%29%5E2%5D%5C%5C%5C%5C%3D-8518.82%5C%20J)
Lost in kinetic energy is 8518.82. Negative sign shows loss.
Answer:
Explanation:
velocity=frequency*wavelength
velocity = 2.99*10^8 m/s
frequency = ?
wavelength = 3.012*10^-12
2.99*10^8m/s = (f)(3.012*10^-12)
f=9.58*10^19 Hertz
Answer:
- It can be infer that it has a lower frequency.
<em>In the case of electromagnetic waves.</em>
- A short wavelength means a lower energy,
Explanation:
The wavelength is the distance between two consecutive crests or valleys while the frequency is the number of crests that pass for a specific point in an interval of time.
For example, a person makes laundry once a weak.
In this example, the event is represented by the laundry and the interval of time is once a weak
The velocity of a wave is defined as:
(1)
Where
is the frequency and
is the wavelenth
(2)
Notice from equation 2 that the wavelength is inversely proportional to the frequency (when the wavelength increases the frequency decreases).
In the case of electromagnetic waves, a short wavelength means a lower energy, as it can be seen in equation 4 (inversely proportional).
(3)
(4)