1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
3 years ago
9

How much does a 59 kg woman weigh on earth?

Physics
2 answers:
LiRa [457]3 years ago
8 0
578 newtons or 129.8 pounds
leonid [27]3 years ago
5 0
9.8........................
You might be interested in
Difference between rest and motion?
Yuki888 [10]

Answer:

Rest and motion are relative terms. In simple terms, an object that changes its position is said to be in motion while the opposite action causes an object to be at rest.

Explanation:

6 0
2 years ago
A box weighing 52.4 N is sliding on a rough horizontal floor with a constant friction force of magnitude LaTeX: ff. The box's in
german

Answer:

The magnitude of the friction force exerted on the box is 2.614 newtons.

Explanation:

Since the box is sliding on a rough horizontal floor, then it is decelerated solely by friction force due to the contact of the box with floor. The free body diagram of the box is presented herein as attachment. The equation of equilbrium for the box is:

\Sigma F = -f = m\cdot a (Eq. 1)

Where:

f - Kinetic friction force, measured in newtons.

m - Mass of the box, measured in kilograms.

a - Acceleration experimented by the box, measured in meters per square second.

By applying definitions of weight (W = m\cdot g) and uniform accelerated motion (v = v_{o}+a\cdot t), we expand the previous expression:

-f = \left(\frac{W}{g} \right)\cdot \left(\frac{v-v_{o}}{t}\right)

And the magnitude of the friction force exerted on the box is calculated by this formula:

f = -\left(\frac{W}{g} \right)\cdot \left(\frac{v-v_{o}}{t}\right) (Eq. 1b)

Where:

W - Weight, measured in newtons.

g - Gravitational acceleration, measured in meters per square second.

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

t - Time, measured in seconds.

If we know that W = 52.4\,N, g = 9.807\,\frac{m}{s^{2}}, v_{o} = 1.37\,\frac{m}{s}, v = 0\,\frac{m}{s} and t = 2.8\,s, the magnitud of the kinetic friction force exerted on the box is:

f = -\left(\frac{52.4\,N}{9.807\,\frac{m}{s^{2}} } \right)\cdot \left(\frac{0\,\frac{m}{s}-1.37\,\frac{m}{s}  }{2.8\,s} \right)

f = 2.614\,N

The magnitude of the friction force exerted on the box is 2.614 newtons.

5 0
3 years ago
A man-made satellite of mass 6105 kg is in orbit around the earth, making one revolution in 430 minutes. What is the magnitude o
blondinia [14]

Answer:

A gravitational force of 6841.905 newtons is exerted on the satellite by the Earth.

Explanation:

At first we assume that Earth is represented by an uniform sphere, such that the man-made satellite rotates in a circular orbit around the planet. Hence, the following condition must be satisfied:

\left(\frac{4\pi^{2}}{T^{2}} \right)\cdot r = \frac{G\cdot M}{r^{2}} (1)

Where:

T - Period of rotation of the satellite, measured in seconds.

r - Distance of the satellite with respect to the center of the planet, measured in meters.

G - Gravitational constant, measured in newton-square meters per square kilogram.

M - Mass of the Earth, measured in kilograms.

Now we clear the distance of the satellite with respect to the center of the planet:

r^{3} = \frac{G\cdot M\cdot T^{2}}{4\pi^{2}}

r = \sqrt[3]{\frac{G\cdot M\cdot T^{2}}{4\pi^{2}} } (2)

If we know that G = 6.67\times 10^{-11}\,\frac{N\cdot m^{2}}{kg^{2}}, M = 6.0\times 10^{24}\,kg and T = 25800\,s, then the distance of the satellite is:

r = \sqrt[3]{\frac{\left(6.67\times 10^{-11}\,\frac{N\cdot m^{2}}{kg^{2}} \right)\cdot (6.0\times 10^{24}\,kg)\cdot (25800\,s)^{2}}{4\pi^{2}} }

r \approx 18.897\times 10^{6}\,m

The gravitational force exerted on the satellite by the Earth is determined by the Newton's Law of Gravitation:

F = \frac{G\cdot m\cdot M}{r^{2}} (3)

Where:

m - Mass of the satellite, measured in kilograms.

F - Force exerted on the satellite by the Earth, measured in newtons.

If we know that G = 6.67\times 10^{-11}\,\frac{N\cdot m^{2}}{kg^{2}}, M = 6.0\times 10^{24}\,kg, m = 6105\,kg and r \approx 18.897\times 10^{6}\,m, then the gravitational force is:

F = \frac{\left(6.67\times 10^{-11}\,\frac{N\cdot m^{2}}{kg^{2}} \right)\cdot (6105\,kg)\cdot (6\times 10^{24}\,kg)}{(18.897\times 10^{6}\,m)^{2}}

F = 6841.905\,N

A gravitational force of 6841.905 newtons is exerted on the satellite by the Earth.

4 0
3 years ago
Which one of the following accurately pairs the device with its function?
Westkost [7]
<span>D is the correct answer. A Bourdon gage is a popular and commonly used kind of gauge for measuring pressure and vacuum. One use for a Bourdon gage is to indicate steam pressure.</span>
5 0
3 years ago
Read 2 more answers
Slow twitch muscles are needed for?
ruslelena [56]

Speed or power activities

4 0
3 years ago
Read 2 more answers
Other questions:
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • In baseball, the defensive team would be the team up to bat True False
    5·2 answers
  • The ultimate source of energy for almost all living organisms is A. animals. B. bacteria. C. plants. D. the Sun.
    10·2 answers
  • The rings of Saturn occupy the region inside Saturn's Roche limit.
    15·1 answer
  • In a closed system that has 45 J of mechanical energy, the gravitational
    9·2 answers
  • A 5.1-m-diameter merry-go-round is initially turning with a 4.1 s period. It slows down and stops in 25 s . Part A Before slowin
    12·1 answer
  • In a game of tug of war, Team A pulls with a force 850N, Team B pulls with force of 975N. Calculate the net force on the rope. B
    7·1 answer
  • What discoveries support the idea of continental drift?
    6·2 answers
  • Si unit of small g and G​
    7·1 answer
  • An astronaut weighs 200 N on the Moon where gravity is 1.62 m/s/s. Find his weight on Earth. HELP PLEASE FAST
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!