Answer:
The electrical potential energy is 0.027 Joules.
Explanation:
The values from the question are
charge (q) = 
Electric Field strength (E) = 
Distance from source (d) = 0.030 m
Now the formula for the electrical potential energy (U) is given by

So now insert the values to find the answer

On further solving

Answer:
tan is 15 for that triangle
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Answer:
Tycho Brahe
Explanation:
Tycho Brahe's accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion.
Explanation:
Given that,
Frequency of the power line, f = 6 Hz
Value of maximum electric field strength of 11.6 kV/m
(a) The wavelength of this very low frequency electromagnetic wave is given by using relation as :




(b) As its can be seen that the wavelength of this wave is very high. It shows that it is a radio wave.
(c) The relation between the maximum magnetic field strength and maximum electric field strength is given by :

So, the maximum magnetic field strength is
.