(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b) ρ = n X (AM) / v X Nₐ
<u>Explanation:</u>
<u />
Given-
Lattice parameter of Li = 3.5089 X 10⁻⁸ cm
1 vacancy per 200 unit cells
Vacancy per cell = 1/200
(a)
Number of vacancies per cubic cm = ?
Vacancies/cm³ = vacancy per cell / (lattice parameter)³
Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³
Vacancies/cm³ = 1.157 X 10²⁰
Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b)
Density is represented by ρ
ρ = n X (AM) / v X Nₐ
where,
Nₐ = Avogadro number
AM = atomic mass
n = number of atoms
v = volume of unit cell
Answer:
umax = 0.1259ft/s
Explanation:
Given:
•Distance between plates, B = 0.01ft
•Pressure difference decrease, 
•Fluid viscosity, u = 10^-³lbf-s/ft²
Specific gravity, S = 0.80
Max velocity in the z-direction will be:
![u_max= [\frac{B^2y}{8u}]\frac{dh}{ds}](https://tex.z-dn.net/?f=u_max%3D%20%5B%5Cfrac%7BB%5E2y%7D%7B8u%7D%5D%5Cfrac%7Bdh%7D%7Bds%7D)

Substituting for h in the first equation, we have:
![\frac{d}{dz}[\frac{p}{y}+z]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdz%7D%5B%5Cfrac%7Bp%7D%7By%7D%2Bz%5D)


= -0.20192
Substituting dh/dz value in the first equation (umax), we have:

umax = 0.1259ft/s
Answer:
Electrons in atoms can act as our charge carrier, because every electron carries a negative charge. If we can free an electron from an atom and force it to move, we can create electricity.
Answer:
Enthalpy, hsteam = 2663.7 kJ/kg
Volume, Vsteam = 0.3598613 m^3 / kg
Density = 2.67 kg/ m^3
Explanation:
Mass of steam, m = 1 kg
Pressure of the steam, P = 0.5 MN/m^2
Dryness fraction, x = 0.96
At P = 0.5 MPa:
Tsat = 151.831°C
Vf = 0.00109255 m^3 / kg
Vg = 0.37481 m^3 / kg
hf = 640.09 kJ/kg
hg = 2748.1 kJ/kg
hfg = 2108 kJ/kg
The enthalpy can be given by the formula:
hsteam = hf + x * hfg
hsteam = 640.09 + ( 0.96 * 2108)
hsteam = 2663.7 kJ/kg
The volume of the steam can be given as:
Vsteam = Vf + x(Vg - Vf)
Vsteam = 0.00109255 + 0.96(0.37481 - 640.09)
Vsteam = 0.3598613 m^3 / kg
From the steam table, the density of the steam at a pressure of 0.5 MPa is 2.67 kg/ m^3