Answer:
Technician B only is correct
Explanation:
Voltage drop testing is a method used to find the amount of electrical resistance available in an high amperage circuit that involves connecting the leads of the meter in parallel to the circuits being tested such that disassembly is not required
In voltage drop test, the red voltmeter lead and black voltmeter lead are placed at two points on the same side of the circuit connection such that the leads are in between two positive connection or two negative connection (rather than connecting the red to the positive and the black to the negative sides of the circuit) and digital voltmeter is used for the voltage drop measurement across the lead while the connection is under load.
Therefore, Technician B only is correct
Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in
Answer:
This is an asynchrnous 3-bit counter. Just note that this design is different and works differently than its synchronous counterpart. It's an easier design than its synchronous counterpart, and is not as reliable because it has delays.
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases

where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air

2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw