Answer:
volumetric flow rate = 
Velocity in pipe section 1 = 
velocity in pipe section 2 = 12.79 m/s
Explanation:
We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.
The density of water is = 997 kg/m³
density = mass/ volume
since we are given the mass, therefore, the volume will be mass/density
25/997 = 
volumetric flow rate = 
Average velocity calculations:
<em>Pipe section A:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

<em>Pipe section B:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

It has to do with mechanical engineering
Answer:
Overall ideal mechanical advantage of the machine = 40
Explanation:
Given:
Ideal mechanical advantage of three machine = 2, 4, 5
Find:
Overall ideal mechanical advantage of the machine
Computation:
Overall ideal mechanical advantage of the machine = 2 × 4× 5
Overall ideal mechanical advantage of the machine = 40
Answer:
the welding gun liner regulates the shielding gas.
Explanation:
The purpose of the welding gun liner is to properly position the welding wire from the wire feeder till it gets to the nozzle or contact tip of the gun. <em>Regulation of the shielding gas depends on factors such as the speed, current, and type of gas being used. </em>In gas metal arc welding, an electric arc is used to generate heat which melts both the electrode and the workpiece or base metal.
The electric arc produced is shielded from contamination by the shielding gas. The heat generated by the short electric arc is low.