<h2>
NH3 is a weak alkali that does not dissociate fully into its solution. Which of the following is true about NH3?
</h2><h2>
</h2><h2>
A. It has a very low pH.
</h2><h2>
B. It's dissociation is a reversible reaction.
</h2><h2>
C. It has a high H+ concentration.
</h2><h2>
D. It will release all of its OH- ions.</h2>
Explanation:
<h3>
NH3 is a weak alkali that does not dissociate fully into its solution: It's dissociation is a reversible reaction.
</h3><h3>
</h3>
Reactions are also :
Reversible reaction
A reaction in which products can combine back to give reactants under same given condition .
Example : N₂+H₂-------NH₃
Irreversible reaction
A reaction in which the products cant combine back to give reactants under same set of conditions .
Example : Burning of paper
Answer:
6.88 mg
Explanation:
Step 1: Calculate the mass of ³²P in 175 mg of Na₃³²PO₄
The mass ratio of Na₃³²PO₄ to ³²P is 148.91:31.97.
175 mg g Na₃³²PO₄ × 31.97 g ³²P/148.91 g Na₃³²PO₄ = 37.6 mg ³²P
Step 2: Calculate the rate constant for the decay of ³²P
The half-life (t1/2) is 14.3 days. We can calculate k using the following expression.
k = ln2/ t1/2 = ln2 / 14.3 d = 0.0485 d⁻¹
Step 3: Calculate the amount of P, given the initial amount (P₀) is 37.6 mg and the time elapsed (t) is 35.0 days
For first-order kinetics, we will use the following expression.
ln P = ln P₀ - k × t
ln P = ln 37.6 mg - 0.0485 d⁻¹ × 35.0 d
P = 6.88 mg
<h3>
Answer:</h3>
82.11%
<h3>
Explanation:</h3>
We are given;
- Theoretical mass of the product is 137.5 g
- Actual mass of the product is 112.9 g
We are supposed to calculate the percentage yield
- We need to know how percentage yield is calculated;
- To calculate the percentage yield we get the ratio of the actual mass to theoretical mass and express it as a percentage.
Thus;
% yield = (Actual mass ÷ Experimental mass) × 100%
= (112.9 g ÷ 137.5 g) × 100%
= 82.11%
Therefore, the percentage yield of the product is 82.11 %
B! because the hydrogen causes some nuclear reactions.