Answer:
35750.4 Joules
Explanation:
Using the formula as follows;
Q = m × c × ∆T
Where;
Q = amount of heat (joules)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
According to the provided information,
mass (m) = 320.0 grams
c = 4.2 J/g°C
∆T = (50.8°C - 24.2°C) = 26.6°C
Q = ?
Using; Q = m × c × ∆T
Q = 320 × 4.2 × 26.6
Q = 35750.4 J
When two gases of a chemical reaction are at the same temperature, pressure and molar volume, then the stoichiometric ratio of the gases would be 1 is to 1. Molar volume is the volume of the gas per mole of the gas. Having the same conditions for both gases would mean that they are present with the same number of moles.
Ionization/dissociation, Ka, larger, concentration/molarity, mostly/completely, strong, weak, base, water, acid, strong
Answer:
See detailed reaction equations below
Explanation:
a) Mg(s) +2HBr(aq) ----------------> MgBr2(aq) + H2(g)
b) Ca(ClO3)2(s) ------------> CaCl2(s) + 3O2(g)
c) 3BaBr2(s) +2Na3PO4(aq) ------------> Ba3(PO4)2(s) + 6NaBr(aq)
d) 3AgNO3(aq) + AlI3(aq) --------------> 3AgI(s) + Al(NO3)3(aq)
Balancing reaction equations involves taking valencies and number of atoms of each element on the reactants and products side into consideration respectively.
Noble gasses have full outer shells giving them 8 electrons