It increases across a period and decreases down a group. A good way to remember this is that fluorine is the most electronegative atom, and it's to the top right of the table.
Answer:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.00064M)
Explanation:
Hello there!
In this case, according to the given chemical reaction at equilibrium, we can set up the equilibrium expression as follows:
![K=\frac{[CO][Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BCO%5D%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Which can be written in terms of x, according to the ICE table:

Thus, we solve for x to obtain that it has a value of 0.01436 M and therefore, the concentrations at equilibrium turn out to be:
![[CO]=[Cl_2]=0.01436M](https://tex.z-dn.net/?f=%5BCO%5D%3D%5BCl_2%5D%3D0.01436M)
![[COCl_2]=0.015M-0.01436M=0.00064M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D0.015M-0.01436M%3D0.00064M)
Regards!
Yes, Ionic bonds do not share electrons. Polar covalent bonds share electrons they just share them unevenly due to the polarity.
<em>Answer:</em>
4) the one that is reduced, which is the oxidizing agent
<em>Explanation:</em>
<em>An oxidizing agent is one that causes oxidation by gaining electrons from another atom/molecule. </em>
Answer:
kwkrofofoxosowoqoaododpdprofpcoxozoskawkdjdn
Explanation:
sklwlrlfclxoskkekrdododosoekekrkrododowoekekfkdodkwkeororkdkdkwejrjrkfidiwi3jr