We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer:
<h2>The answer is 3.0 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass of aluminum = 8.1 g
density = 2.7 g/mL
It's volume is

We have the final answer as
<h3>3.0 mL</h3>
Hope this helps you
Answer:
propane -1 2 3 - trioic acid
The answer for the following problem is mentioned below.
- <u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
Explanation:
Given:
Initial pressure (
) = 290 kPa
Final pressure (
) = 104 kPa
Initial volume (
) = 18.9 ml
To find:
Final volume (
)
We know;
From the ideal gas equation;
P × V = n × R × T
where;
P represents the pressure of the gas
V represents the volume of gas
n represents the no of the moles
R represents the universal gas constant
T represents the temperature of the gas
So;
P × V = constant
P ∝ 
From the above equation;

represents the initial pressure of the gas
represents the final pressure of the gas
represents the initial volume of the gas
represents the final volume of the gas
Substituting the values of the above equation;
= 
= 52.7 ml
<u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
Smaller than; less of it will dissolve before the solution is saturated