Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Answer:
Option A. KCl (aq)
Option D. Mg(OH)₂(s
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
MgCl₂(aq) + KOH(aq) —>
In solution, MgCl₂(aq) and KOH(aq) will dissociate as follow:
MgCl₂(aq) —> Mg²⁺(aq) + 2Cl¯(aq)
KOH(aq) —> K⁺(aq) + OH¯(aq)
MgCl₂(aq) + KOH(aq) —>
Mg²⁺(aq) + 2Cl¯(aq) + 2K⁺(aq) + OH¯(aq) —> 2K⁺(aq) + 2Cl¯(aq) + Mg(OH)₂ (s)
MgCl₂(aq) + KOH(aq) —> 2KCl (aq) + Mg(OH)₂(s)
Thus, the products of the above reaction are: KCl(aq) and Mg(OH)₂(s)
Thus, option A and D gives the correct answer to the question.
Answer is: t<span>he hot soup will lose heat and the ice water will gain heat.
</span><span>Heat spontaneously flows from a hotter to a colder body.
</span>The thermal radiation<span> is </span>electromagnetic radiation<span> generated by the </span>thermal motion<span> of </span>charged particles<span> in </span>matter (in this case from the hot soup to the cold water).
Answer:
B. Respiration
Explanation:
cellular respiration is the process where cells use glucose (C6H12O6) and oxygen gas (O2) to make carbon dioxide (CO2) water (H2O) and ATP, which is energy
formula:
C6H12O6 + 6O2 -> 6CO2 + 6H20 + 38ATP
The electromagnet and the permanent magnet -- interact with each other as any two magnets do. The positive end of the electromagnet is attracted to the negative pole of the permanent magnetic field, and the negative pole of the electromagnet is repelled by the permanent magnet's negative pole