Map map map map map he keeps us on track when I leave home he go me back
Answer:
-21 kJ·mol⁻¹
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50 50
c/mol·dm⁻³: 1.0 1.0
ΔT = 4.5 °C
C = 4.184 J·°C⁻¹g⁻¹
C_cal = 50 J·°C⁻¹
Calculations:
(a) Moles of acid

So, we have 0.050 mol of reaction
(b) Volume of solution
V = 50 dm³ + 50 dm³ = 100 dm³
(c) Mass of solution

(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.050ΔH + 100×4.184×4.5 + 50×4.5 = 0
0.050ΔH + 1883 + 225 = 0
0.050ΔH + 2108 = 0
0.050ΔH = -2108
ΔH = -2108/0.0500
= -42 000 J/mol
= -42 kJ/mol
This is the heat of reaction for the formation of 2 mol of water
The heat of reaction for the formation of mol of water is -21 kJ·mol⁻¹.
C. 96.82 kPa because to find the amount of pressure the air is causing you need to subtract the amount of pressure the water vapor is causing because the only two gasses making up the air in the pool area are air and water vapor.
Answer:
(119 g H2O) / (18.01532 g H2O/mol) x (1 mol Pb / 2 mol H2O) x (207.21 g Pb/mol) = 684 g Pb
Explanation: