1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
3 years ago
6

Clark made four of his truck payments late and was fined four late fees. The total change to his savings from late fees was −$56

. How much was one late fee?
Mathematics
1 answer:
alexdok [17]3 years ago
5 0
If the total for four late fees were fifty six dollars, then to find the amount for one, we divide the total by the amount of late fees.

So it'll be 56 / 4 which will equal to 14 dollars.
One late fee is equaled to fourteen dollars. 
You might be interested in
PLEASE HELP ASAP In this task, you will practice finding the area under a nonlinear function by using rectangles. You will use g
mrs_skeptik [129]

Answer:

a) 1280 u^{2}

b) 1320 u^{2}

c) \frac{4000}{3} u^{2}

Step-by-step explanation:

In order to solve this problem we must start by sketching the graph of the function. This will help us visualize the problem better. (See attached picture)

You can sketch the graph of the function by plotting as many points as you can from x=0 to x=20 or by finding the vertex form of the quadratic equation by completing the square. You can also do so by using a graphing device, you decide which method suits better for you.

A)

So we are interested in finding the area under the curve, so we divide it into 5 rectangles taking a right hand approximation. This is, the right upper corner of each rectangle will touch the graph. (see attached picture).

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=5 so we get:

\Delta x=\frac{20-0}{5}=\frac{20}{5}=4

so each rectangle must have a width of 4 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=64

h2=96

h3=96

h4= 64

h5=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(4)(64+96+96+64+0)

so:

A= 1280 u^{2}

B) The same procedure is used to solve part B, just that this time we divide the area in 10 rectangles.

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=10 so we get:

\Delta x=\frac{20-0}{10}=\frac{20}{10}=2

so each rectangle must have a width of 2 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=36

h2=64

h3=84

h4= 96

h5=100

h6=96

h7=84

h8=64

h9=36

h10=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(2)(36+64+84+96+100+96+84+64+36+0)

so:

A= 1320 u^{2}

c)

In order to find part c, we calculate the area by using limits, the limit will look like this:

\lim_{n \to \infty} \sum^{n}_{i=1} f(x^{*}_{i}) \Delta x

so we start by finding the change of x so we get:

\Delta x =\frac{b-a}{n}

\Delta x =\frac{20-0}{n}

\Delta x =\frac{20}{n}

next we find x^{*}_{i}

x^{*}_{i}=a+\Delta x i

so:

x^{*}_{i}=0+\frac{20}{n} i=\frac{20}{n} i

and we find f(x^{*}_{i})

f(x^{*}_{i})=f(\frac{20}{n} i)=-(\frac{20}{n} i)^{2}+20(\frac{20}{n} i)

cand we do some algebra to simplify it.

f(x^{*}_{i})=-\frac{400}{n^{2}}i^{2}+\frac{400}{n}i

we do some factorization:

f(x^{*}_{i})=-\frac{400}{n}(\frac{i^{2}}{n}-i)

and plug it into our formula:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{400}{n}(\frac{i^{2}}{n}-i) (\frac{20}{n})

And simplify:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{8000}{n^{2}}(\frac{i^{2}}{n}-i)

\lim_{n \to \infty} -\frac{8000}{n^{2}} \sum^{n}_{i=1}(\frac{i^{2}}{n}-i)

And now we use summation formulas:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{n(n+1)(2n+1)}{6n}-\frac{n(n+1)}{2})

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{2n^{2}+3n+1}{6}-\frac{n^{2}}{2}-\frac{n}{2})

and simplify:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (-\frac{n^{2}}{6}+\frac{1}{6})

\lim_{n \to \infty} \frac{4000}{3}+\frac{4000}{3n^{2}}

and solve the limit

\frac{4000}{3}u^{2}

4 0
3 years ago
Need help in number 30 please help
Mariana [72]
Y^2-9y+81 can not be factored with any rational numbers
5 0
3 years ago
Hey guys I really need help on this one!
Marina CMI [18]
I’m pretty sure it’s the last one. :)
4 0
3 years ago
Hi, Help plssss
olga_2 [115]

Answer:

a and b are parallel

Step-by-step explanation:

corresponding angles converse

3 0
3 years ago
Read 2 more answers
Question 1(Multiple Choice Worth 5 points)
Hoochie [10]

Answer:

Q1) D Q2) The final statement Q3) first statement Q4) (0,14) and (10,1)

Step-by-step explanation:

Q1) in this D has the most points therefore highest correlation

Q2) there is no correlation because the points cannot form a linear line

Q3) it does not touch all points but is extreamly close ans is therefore considered a correct linear correlation.

Q4) these points have the closest linear correlation

4 0
3 years ago
Other questions:
  • 1. Check the divisibility of the following numbers by 2, 3, 9 and 11 a) 76543 b) 98765436
    7·1 answer
  • What is 8.194 rounded to the nearest tenth
    10·2 answers
  • Plz plz plz help me quickly I’ll give brainlist!!!!!!!!!!plz!!!!
    14·1 answer
  • I’ll mark brainlist
    12·2 answers
  • Angie has a car worth $18,200. She has $525 in cash, and $2,800 in her savings account. Her only debt is the loan she took out t
    12·2 answers
  • Kylie wants to add 10 to 167. She thinks that the 6 represents the number of tens and thats by adding a 10 there are a total of
    8·1 answer
  • Can someone help me please?
    15·1 answer
  • Please help<br> 10 points
    11·2 answers
  • 16 more than craigs score is 62
    12·1 answer
  • If the area of a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!