The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
<h3>What is velocity?</h3>
Velocity is a vector quantity that tells the distance an object has traveled over a period of time.
Displacement is a vector quality showing total length of an area traveled by a particular object.
Imagine a time-position graph where the velocity of an object is constant. What will be observed on the graph concerning the slope of the line segment as well as the velocity of the object?
The slope of the line is equal to zero and the object will be stationary.
The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
To learn more about velocity refer to the link
brainly.com/question/18084516
#SPJ2
85 decibels or higher can cause damage to the human ear.
Decibels is the value of the measurement of sound. Hearing loss can be caused
by noise coming from a loud sound. Noise induced hearing loss maybe permanent
loss or temporary loss. Examples of activities that can give you a noise induced
hearing loss is target shooting, listening to music in your earphones that have
a high volume, and using lawnmowers.
If I remember correctly (from my studies long time ago) the layers are from the outer to the center:
SiAl : Silicon-Aluminum
SiMa : Silicon-Magnesium (although should be Mg)
NiFe : Nickel-Iron
The SiMa layer should have the lightest elements (Magnesium is lighter than Aluminum)
Newton’s first law of motion, also called the law on inertia, states that an object continues in its state of rest or of uniform motion unless compelled to change that state by an external force.Newton’s second law of motion states that if a net force acts on an object, it will cause an acceleration of that object.Newton’s third law of motion<span> states that for every action there is an equal and opposite reaction. hope this wasnt two long!</span>
Explanation:
The changes can be made in airplane longitudinal control to maintain altitude while the airspeed is being decreased is
We can increase the angle of attack this would compensate for the decreasing lift. As the angle of attack directly controls the distribution of pressure on the wings. Moreover, increase in angle of attack will also cause the drag to increase.