Answer:
Mass and height
Explanation:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 
Which is represented as;

stands for gravitational potantial energy,
m stands for mass of object,
g is the gravitational constant and
h is the height.
Here we see that mass of object and height is directly proportional to the gravitational potential energy.
That means increasing in mass and height will result in increasing gravitational potential energy.
Answer:
The mild climate enabled Romans to grow wheat, grapes, and olives. This abundance o food supported the people and allowed Rome to prosper. While the climate made year-long agriculture possible, Rome also had the advantage to be near water. The Tiber River helped the agricultural system to prosper
Explanation:
Answer:
h = 18.41 m
Explanation:
Given that,
Mass of a test rocket, m = 11 kg
Its fuel gives it a kinetic energy of 1985 J by the time the rocket engine burns all of the fuel.
According to the law of conservation of energy,
PE = KE = mgh
h is height will the rocket rise

So, the rocket will rise to a height of 18.41 m.
I'm not sure about the "in nature" part but i think its A
Answer:
A) True, B) False, C) False and D) false
Explanation:
Let's solve the problem using the law of conservation of energy to know if the statements are true or false
Let's look for mechanical energy
Initial
Emo = Ke = ½ k Dx2
Final
Em1= ½ m v12
Emo = Em1
½ k Δx2 = ½ m v₁²
v₁² = k / m Δx²
v₁ = √ k/m Δx
Now let's calculate the speed when it falls
Vfy² = Voy² - 2gy
Vfy² = - 2gy
Vf² = v₁² + vfy²
A) True v₁ = A Δx
.B) False. As there is no rubbing the mechanical energy conserves
.C) False the velocity is proportional to the square root of the height
v2y = v2 √2
. D) false promotional compression speed