1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
11

A circular loop with radius r is rotating with constant angular velocity ω in a uniform electric field with magnitude E. The axi

s of rotation is perpendicular to the electric field direction and is along the diameter of the loop. Initially, the electric flux through the loop is at its maximum value. Write an equation for the electric flux through the loop as a function of time in terms of r, E, and ω. Find the expression for electric flux through the loop as a function of time.
Physics
1 answer:
inn [45]3 years ago
3 0

Answer:

\Phi_{E} = E\pi r^2 \omega t

Explanation:

The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

\Phi_{E} = \vec{E}\vec{A}

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.

The above formula can be rewritten as follows

\Phi_{E} = EA\cos(\theta)

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.

If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

\theta = \omega t

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.

Therefore the electric flux can be written as a function of time

\Phi_{E} = E\pi r^2 \omega t

You might be interested in
A 0.12 g honeybee acquires a charge of +24pC while flying. The earth's electric field near the surface is typically 100 N/C, dow
shusha [124]

Answer:

150000000

\dfrac{F_e}{F_g}=0.00000203873598369

49050000 N/C

Explanation:

q = Charge = 24 pC

m = Mass of honeybee = 0.12 g

E = Electric field = 100 N/C

g = Acceleration due to gravity = 9.81 m/s²

1\ C=6.25\times 10^{18}\ electrons

Number electrons is

n=24\times 10^{-12}\times 6.25\times 10^{18}\\\Rightarrow n=150000000

The number of electrons added or removed was 150000000

Force is given by

F_e=Eq\\\Rightarrow F_e=100\times 24\times 10^{-12}\\\Rightarrow F_e=2.4\times 10^{-9}\ N

The ratio is

\dfrac{F_e}{F_g}=\dfrac{2.4\times 10^{-9}}{0.12\times 10^{-3}\times 9.81}\\\Rightarrow \dfrac{F_e}{F_g}=0.00000203873598369

The ratio is \dfrac{F_e}{F_g}=0.00000203873598369

Balancing the forces we get

Eq=mg\\\Rightarrow E=\dfrac{mg}{q}\\\Rightarrow E=\dfrac{0.12\times 10^{-3}\times 9.81}{24\times 10^{-12}}\\\Rightarrow E=49050000\ N/C

The electric field required is 49050000 N/C

4 0
3 years ago
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
True or false? A protostellar cloud spins faster as it contracts
Aleks04 [339]

Answer:

No. The protostellar cloud spins faster in the collapsing stage (stage 1) and becomes much slower in the contraction stage (stage 2)

Explanation:

Once the cloud is so dense that the heat which is being produced in its center cannot easily escape, pressure rapidly rises, and catches up with the weight, or whatever external force is causing the cloud to collapse, and the cloud becomes stable, as a protostellar cloud.

The protostellar cloud will become more dense over thousands of years. This stage of decreasing size is known as a contraction, rather than a collapse. In the contraction stage the cloud has become much slower, and because weight and pressure are more or less in balance. In the first stage of formation, the decrease of size is very rapid, and compressive forces completely overwhelm the pressure of the gas, and we say that the cloud is collapsing.

3 0
3 years ago
What are possible units for impulse? Check all that apply. kg • m kg • N • s N • m
Vlada [557]

We know that impulse is simply the product of Force and time:

Impulse = Force * time

 

Since Force has a unit of Newton or kg m/s^2 and time is in seconds, therefore impulse can have units as:

N s

or

<span>kg m/s</span>

4 0
3 years ago
If you were on a decision making board with the task of choosing which innovation to fund, what criteria would you use to make y
faust18 [17]

Explanation:

The criteria for decision making would be

1. I would fund for the school of young diabetics, for the sole purpose of them leaning and being motivated for a healthy lifestyle.

2. I would also fund for new and improved insulin pumps as old ones cause multiple problems.

3 0
3 years ago
Other questions:
  • What wave phenomenon is responsible for the sunlight shown in this diagram? A.)Diffraction, because light is bent around the clo
    14·2 answers
  • A car travels 35 km west and 90 km north in two hours what is its average velocity?
    8·1 answer
  • Vector has a magnitude of 4.40 m and is directed east. Vector has a magnitude of 3.40 m and is directed 39.0° west of north. Wha
    9·1 answer
  • PLS ANSWER What is the difference between direct and alternating current? (Be sure to write in complete sentences starting with
    10·1 answer
  • In a demonstration, a 4.00 cm2 square coil with 10 000 turns enters a larger square region with a uniform 1.50 T magnetic field
    9·1 answer
  • Earth orbits the sun once every 365.25 days. Find the average angular speed of earth about the sun. Answer in units of rad/s.
    12·1 answer
  • A solid sphere with a moment of inertia of 2.20 kgm2 is rolling along the ground (without slipping) with an angular velocity of
    12·1 answer
  • Describes at least three everyday things that exist or occur because of science
    7·1 answer
  • What is a energy transformation when using a microwave to make popcorn?
    11·2 answers
  • If a bag of pretzels says it contains 10 servings, and each serving is 150 calories, how many calories would you consume if you
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!