Explanation:
initial height, yo = 2 m
initial velocity, u = 20 m/s
angle of projection,θ = 5 degree
distance of net = 7 m
height of net = 1 m
Let it covers a vertical distance y in time t .
Use Second equation of motion for vertical motion
As it hits the ground in time t, so put y = 0
Taking positive sign, t = 0.84 s
The ball travels a horizontal distance x in time t
X = 20 Cos5 x t
X = 16.76 m
As this distance is more than the distance of net, so it clears the net.
Let t' be the time taken to travel a horizontal distance equal to the distance of net
7 = 20 cos5 x t'
t' = 0.35 s
Let the vertical distance traveled by the ball in time t' is y'.
So,
y' = 2.008 m
So, it clears the net which is 1 m high.
It clears the net by a vertical distance of 2.008 - 1 = 1.008 m and horizontal distance 16.76 - 7 = 9.76 m
your welcome, and have a great day.
Does it have to be that exact word. cause it is just another term for psuedopodium
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m
There's so much going on here, in a short period of time.
<u>Before the kick</u>, as the foot swings toward the ball . . .
-- The net force on the ball is zero. That's why it just lays there and
does not accelerate in any direction.
-- The net force on the foot is 500N, originating in the leg, causing it to
accelerate toward the ball.
<u>During the kick</u> ... the 0.1 second or so that the foot is in contact with the ball ...
-- The net force on the ball is 500N. That's what makes it accelerate from
just laying there to taking off on a high arc.
-- The net force on the foot is zero ... 500N from the leg, pointing forward,
and 500N as the reaction force from the ball, pointing backward.
That's how the leg's speed remains constant ... creating a dent in the ball
until the ball accelerates to match the speed of the foot, and then drawing
out of the dent, as the ball accelerates to exceed the speed of the foot and
draw away from it.
<span>Temperature causes water molecules to move more quickly, because each individual molecule has more energy as it gets hotter (according to Kinetic molecular theory). If you get water hot enough, the molecules move so much that the hydrogen bonds that hold them together start to break and the water becomes a gas ... water vapor. This your answer unless there are choices.</span>