The potential energy at x = 8 m is -2000 V and at x = 2 m is 400 V. The magnitude and direction of the electric field will be 400 V/m directed parallel to the +x-axis
Electric field, an electric property associated with each point in space when charge is present in any form. The magnitude and direction of the electric field are expressed by the value of E, called electric field strength or electric field intensity or simply the electric field.
The electric potential energy of any given charge or system of changes is termed as the total work done by an external agent in bringing the charge or the system of charges from infinity to the present configuration without undergoing any acceleration.
The relation between electric field and electric potential can be generally expressed as – “Electric field is the negative space derivative of electric potential.”
Electric field = - d V / dx
-(-2000-400) =
2400 = E (8-2)
2400 V = E (6)
E = 400 V/m
To learn more about electric potential energy here
brainly.com/question/16890427
#SPJ4
Answer:
electric energy ( power ) = 300000 W
Explanation:
given data
mechanical (hydroelectric) energy = 120 MJ/min = 2000000 J/s
efficiency = 15 % = 0.15
solution
we know that Efficiency of electric engine is expression as
Efficiency = Mechanical energy ÷ electric energy ......................1
and here dam electrical power output is
put here value in equation 1
electric energy ( power ) = Efficiency × Mechanical energy ( power )
electric energy ( power ) = 0.15 × 2000000 J/s
electric energy ( power ) = 300000 W
It brings cold water from the bottom of the ocean.
Answer:
a. t = 1.43 s
b. d = 7.88 m
Explanation:
a. The time of flight can be found using the following equation:

Where:
: is the final height = -10 m
: is the initial height = 0
: is the initial speed in the vertical direction = 0
g: is the acceleration due to gravity = 9.81 m/s²
By solving the above equation for "t" we have:

Hence, the ball will hit the ground in 1.43 s.
b. The distance in the horizontal direction can be found as follows:

Where:
x₀: is the initial position in the horizontal direction = 0
a: is the acceleration in the horizontal direction = 0 (it is moving at constant speed)

Therefore, the ball will travel 7.88 m before it hits the ground.
I hope it helps you!