Answer:

Explanation:
The force of kinetic friction on the block is defined as:

Where
is the coefficient of kinetic friction between the block and the surface and N is the normal force, which is always perpendicular to the surface that the object contacts. So, according to the free body diagram of the block, we have:

Replacing this in the first equation and solving for
:

T = 2*pi*Sqrt (L/g)
T = Period = Time to complete one oscillation, L = Length of the pendulum, g = gravitational acceleration.
Then,
L = {T/(2*pi)}^2*g = {7/(2*pi)}^2*3.711 = 4.606 m
Answer:

Explanation:
given data:
density of water \rho = 1 gm/cm^3 = 1000 kg/m^3
height of water = 20 cm =0.2 m
Pressure p = 1.01300*10^5 Pa
pressure at bottom



= 1.01300*10^5 - 1000*0.2*9.8
= 99340 Pa
h_[fluid} = 0.307m


I believe the correct answer is expansion.