Since, population of species A is represented by : 
Let us find the population of species A, at the end of week 1:
i.e., x = 1
i.e., 
i.e., 
i.e., 
Also, since population of species B is represented by : 
Let us find the population of species B, at the end of week 1:
i.e., x = 1
i.e., 
i.e., 
i.e., 
Thus, at the end of 1 week, species A and species B will have the same population.
Hence, option D is correct.
Answer:
AB = 2
Step-by-step explanation:
Using the secant- secant theorem, that is
PA × PB = PD × PC , substitute values
10(10 + AB) = 8(8 + 7)
100 + 10AB = 8 × 15 = 120 ( subtract 100 from both sides )
10AB = 20 ( divide both sides by 10 )
AB = 2
50% of 40 is 20, and 40% of 50 is 20, neither one is greater, they're equal
Every triangle’s inner angles’ addition equals to 180°
So if we find the x:
38°+x+2°+x=180°
40°+2x=180°
2x=180°-40°=140°
x=140°/2
x=70°
Now if we find the I hope this helped :)