Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
Answer:
Quantitative observation is an objective collection of data which is primarily focused on numbers and values.
I believe it would be better to use an orbital designation than the written configuration, if the number of electrons in the ground state of the atom are quite high for the given element, as above 50, for instance.
This saves space and also one can see the discrete quantized energy levels associated with the subshells of the main energy levels if written in orbital designation.