The different types of microscopes are all necessary because not all experiments require the same level of magnification. For dissections low magnification is sufficient, so a dissecting microscope works very well, while for viewing single cells the 1000 fold magnification of a compound light microscope is more accurate.
5. B air is a mixture of many elements, but is not a chemically fused.
6. B Beef stew, composition varies throughout.
7. A. They can be chemically separated into their component elements, but they are all homogenous, and as such, have constant composition, which differs from the components properties, as the components must undergo a chemical change to become compounds.
The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. ... If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.
The correct answer of the given question above would be FLAGELLA. The structure that makes it possible for some kinds of prokaryotic cells to move around is the FLAGELLA. Prokaryotic cell is one of the types of cells. The other type is the Eukaryotic cell. This cell is found in two Kingdoms of life which are Archaea and Bacteria. Hope this answer helps.
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃