78.4 L volume of container is required to hold 3.2 moles of gas.
Explanation:
- STP is defined as the standard temperature and pressure of a gas in room temperature conditions. At STP, one mole of the gas which has Avogadro's number of molecules in it will occupy a volume of 22.4 L.
- So, one mole of a substance or gas will occupy a volume of 22.4 L then the volume of the container needed for 3.2 moles of gas is calculated by multiplying 22.4 L, standard volume with the moles of the gas 3.2 moles.
- Hence, the answer would be 78.4 L.
Answer:
The element is CARBON
The number 6 refers to the ATOMIC NUMBER
the numbers 12, 13, and 14 refer to the ATOMIC MASS
how many protons and neutrons are in the first isotope?
<u>6</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u>6</u>
how many protons and neutrons are in the second isotope?
<u>6</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>7</u>
<u>how many protons and neutrons are in the </u><u>t</u><u>h</u><u>i</u><u>r</u><u>d</u><u> </u><u>isotope?</u>
<u>6</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>8</u>
<u>y</u><u>o</u><u>u</u><u> </u><u>a</u><u>r</u><u>e</u><u> </u><u>w</u><u>e</u><u>l</u><u>c</u><u>o</u><u>m</u><u>e</u><u> </u><u>:</u><u>)</u>
When acids react with water, H ions are released which then combine with water molecules to form H₃O⁺
Part (a) :
H₂(g) + I₂(s) → 2 HI(g)
From given table:
G HI = + 1.3 kJ/mol
G H₂ = 0
G I₂ = 0
ΔG = G(products) - G(reactants) = 2 (1.3) = 2.6 kJ/mol
Part (b):
MnO₂(s) + 2 CO(g) → Mn(s) + 2 CO₂(g)
G MnO₂ = - 465.2
G CO = -137.16
G CO₂ = - 394.39
G Mn = 0
ΔG = G(products) - G(reactants) = (1(0) + 2*-394.39) - (-465.2 + 2*-137.16) = - 49.3 kJ/mol
Part (c):
NH₄Cl(s) → NH₃(g) + HCl(g)
ΔG = ΔH - T ΔS
ΔG = (H(products) - H(reactants)) - 298 * (S(products) - S(reactants))
= (-92.31 - 45.94) - (-314.4) - (298 k) * (192.3 + 186.8 - 94.6) J/K
= 176.15 kJ - 84.78 kJ = 91.38 kJ
The percentage of Chromium in Chromium Oxide is calculated as follow,
Step 1: Calculate Molar mass of Cr₂O₃,
Cr = 51.99 u
O = 16 u
So,
2(51.99) + 3(16) = 103.98 + 48 = 151.98 u
Step 2: Secondly divide molar mass of only chromium with total mass of Cr₂O₃ and multiply with 100.
i.e.
=

× 100
=
68.41 %
So, the %age composition of chromium in chromium oxide is
68.41 %.