<span>b)Determine your horisontal distance from window (ans. 1.5 m)
c)Calc the speed of ball as you catch it (ans: 8.2m/s)
I dont get what 42 m below the horizontal is, can someone give me direction on how to do this?
</span>
Answer:
<em>155.80rad/s</em>
Explanation:
Using the equation of motion to find the angular acceleration:

is the final angular velocity in rad/s
is the initial angular velocity in rad/s
is the angular acceleration
t is the time taken
Given the following

Time = 4.1secs
Convert the angular velocity to rad/s
1rpm = 0.10472rad/s
6100rpm = x
x = 6100 * 0.10472
x = 638.792rad/s
Get the angular acceleration:
Recall that:

638.792 = 0 + ∝(4.1)
4.1∝ = 638.792
∝ = 638.792/4.1
∝ = 155.80rad/s
<em>Hence the angular acceleration as the blades slow down is 155.80rad/s</em>
Answer:

It will float.
Explanation:
Hello.
In this case, given the width, length and height, we can compute the volume as follows:

Moreover, since the density is computed via the division of the mass by the volume:

We obtain:

In such a way, since the solid has a lower density than the water, we infer it will float.
Best regards.
Answer:
D. 1.8 × 102 newtons radially inward
Explanation:
The magnitude of the centripetal force is given by:

where
m is the mass of the object
v is the tangential speed
r is the radius of the circular trajector
In this problem, we have m = 4.0 kg, v = 6.0 m/s and r = 0.80 m, therefore substituting into the equation we get

The centripetal force is the force that keeps the object in a circular trajectory, so it is a force that is always directed inward (towards the centre of the circular path) and radially. Therefore, the correct answer is
D. 1.8 × 102 newtons radially inward