Answer:
529.92Newton Meters
Explanation:
Work=force x displacement
8books in total
force is 1.8kg
dispplacement is 4.6cm
times both units by 8 and u get
force - 14,4
displacement - 36.8
now times boht together and u get 529.92nm
The distance from the base of the building the rock will land is 26.4 m
<h3>Data obtained from the question </h3>
- Horizontal velocity (u) = 20 m/s
- Height (h) = 8.50 m
- Distance (s) =?
<h3>Determination of the time to reach the ground </h3>
- Height (h) = 8.50 m
- Acceleration due to gravity (g) = 9.8 m/s²
- Time (t) =?
h = ½gt²
8.5 = ½ × 9.8 × t²
8.5 = 4.9 × t²
Divide both side by 4.9
t² = 8.5 / 4.9
Take the square root of both side
t = √(8.5 / 4.9)
t = 1.32 s
<h3>How to determine the distance </h3>
- Horizontal velocity (u) = 20 m/s
- Time (t) = 1.32 s
- Distance (s) =?
s = ut
s = 20 × 1.32
s = 26.4 m
Learn more about motion under gravity:
brainly.com/question/22719691
Answer:
i would say that the answer would be B
Answer:
Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)
Explanation:
Answer:
0.187 m
Explanation:
We'll begin by calculating the acceleration of the ball. This can be obtained as follow:
Mass (m) = 0.450 Kg
Force (F) = 38 N
Acceleration (a) =?
F = m × a
38 = 0.450 × a
Divide both side by 0.450
a = 38 / 0.450
a = 84.44 m/s²
Finally, we shall determine the distance. This can be obtained as follow:
Initial velocity (u) = 2.20 m/s.
Final velocity (v) = 6 m/s
Acceleration (a) = 84.44 m/s²
Distance (s) =?
v² = u² + 2as
6² = 2.2² + (2 × 84.44 × s)
36 = 4.4 + 168.88s
Collect like terms
36 – 4.84 = 168.88s
31.52 = 168.88s
Divide both side by 168.88
s = 31.52 / 168.88
s = 0.187 m
Thus, the distance is 0.187 m