Answer:
194,400 joules of kinetic energy.
Explanation:
Remember that to calculate the Kinetic energy you need to use the next formula:

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.
Angry sound level = 70 db
Soothing sound level = 50 db
Frequency, f = 500 Hz
Assuming speed of sound = 345 m/s
Density (assumed) = 1.21 kg/m^3
Reference sound intensity, Io = 1*10^-12 w/m^2
Part (a): Initial sound intensity (angry sound)
10log (I/Io) = Sound level
Therefore,
For Ia = 70 db
Ia/(1*10^-12) = 10^(70/10)
Ia = 10^(70/10)*10^-12 = 1*10^-5 W/m^2
Part (b): Final sound intensity (soothing sound)
Is = 50 db
Therefore,
Is = 10^(50/10)*10^-12 = 18*10^-7 W/m^2
Part (c): Initial sound wave amplitude
Now,
I (W/m^2) = 0.5*A^2*density*velocity*4*π^2*frequency^2
Making A the subject;
A = Sqrt [I/(0.5*density*velocity*4π^2*frequency^2)]
Substituting;
A_initial = Sqrt [(1*10^-5)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-8 m = 69.7 nm
Part (d): Final sound wave amplitude
A_final = Sqrt [(1*10^-7)/(0.5*1.21*345*4π^2*500^2)] = 6.97*10^-9 m = 6.97 nm
Answer:
Explanation:
Given
Initial Intensity of light is S
when an un-polarized light is Passed through a Polarizer then its intensity reduced to half.
When it is passed through a second Polarizer with its transmission axis 

here 


When it is passed through third Polarizer with its axis
to first but
to second thus 



When middle sheet is absent then Final Intensity will be zero
Answer:
True I hope you like it
Give me a brainliest answer