The third equation of free fall can be applied to determine the acceleration. So that Paola's acceleration during the flight is 39.80 m/
.
Acceleration is a quantity that has a direct relationship with velocity and also inversely proportional to the time taken. It is a vector quantity.
To determine Paola's acceleration, the third equation of free fall is appropriate.
i.e
=
± 2as
where: V is the final velocity, U is the initial velocity, a is the acceleration, and s is the distance covered.
From the given question, s = 20.1 cm (0.201 m), U = 4.0 m/s, V = 0.
So that since Poala flies against gravity, then we have:
=
- 2as
0 =
- 2(a x 0.201)
= 16 - 0.402a
0.402a = 16
a = 
= 39.801
a = 39.80 m/
Therefore Paola's acceleration is 39.80 m/
.
Visit: brainly.com/question/17493533
Answer:
(A) No
(B) Speed decreases
Explanation:
(A) since there is nothing propelling the boat and the friction between the ice and the boat and also air resistance is negligible the net force of the system in the horizontal direction is zero and hence there is no change in the horizontal momentum of the boat.
(B) Since the person had not velocity in the horizontal direction before landing on the boat but now has one after landing on the boat, the speed of the boat will decrease because the momentum has to be conserved (remember there is no change in it).
Answer:
Speed of the airplane 10.0 s later = 12.2 m/s
Explanation:
Mass of Boeing 777 aircraft = 300,000 kg
Braking force = 445,000 N
Deceleration

Initial velocity, u = 27 m/s
Time , t = 10 s
We have equation of motion, v =u +at
v = 27 + (-1.48) x 10 = 27 - 14.8 = 12.2 m/s
Speed of the airplane 10.0 s later = 12.2 m/s
Answer:
In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.
Explanation: