Answer:
the intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment.
<span>1200 meters is less than 1 kilometer
</span>is false
Answer:
The frequency increases with a shorter horn <em>(Option B)</em>.
Explanation:
The length of the horn determines the distance along which the wave travels; simply called the wavelength. Therefore, a short horn tube will produce a short wavelength and vice versa.
Sound waves have various characteristics that define pitches in musical instruments and these characteristics are interdependent on each other.
in this case, the frequency and the frequency and the wavelength are related.
The relationship between the wavelength and its frequency is given as:
<em> </em><em>c = f λ </em><em> </em>
<em>where 'c' is the speed of sound through the instrument; 'f ' is the frequency and 'λ' is the wavelength.</em>
Let's assume that the speed at which the musician blows air into the mouthpiece remains constant, an increase in wavelength will cause a decrease in frequency. Conversely, as the tube of the horn becomes shorter the frequency increases.
When it comes to horizontal projectiles, the formula for time is:

Where:
dy = vertical distance or height
g = acceleration due to gravity
t = time
Based on the problem, we know that the height at which the tennis ball was thrown is 78.4 m and the acceleration due to gravity is a constant 9.8m/s2. All you need to do is input that into our equation:





The time it would take is
4 seconds.