1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
7

Calculate the period of a satellite orbiting the Moon, 98 kmkm above the Moon's surface. Ignore effects of the Earth. The radius

of the Moon is 1740 kmkm.
Physics
1 answer:
beks73 [17]3 years ago
6 0

Answer:

3.6*10^18s

Explanation:

To find the period of the satellite

We need to apply kephler's third law

Which is

MP² = (4π²/G) d³

d=semi-major axis which is the distance from center of moon = 98km+1740km = 1838km

where M= mass of the moon = 7.3x10^22kg

P=period

G=newtonian gravatational constant= 6.67x10^-11

To find the Period solve for P

P = √[(4π²/G M)xd³]

P=√(4 π²/6.67x10^-22*7.3x10^22kg) x (1.838x10^6m)³]

= 3.6*10^18s

You might be interested in
Use the following table of a school bus during morning pickups to calculate its average speed between 0h and 2.34h.
Gelneren [198K]

Answer:

Hi there, this image is your answer

3 0
2 years ago
Assume that the polymer material has a constant refractive index of 1.5. For light of 600nm wavelength at normal incidence, what
yaroslaw [1]

Answer:

Minimum thickness will be 100 nm

Explanation:

We have given refractive index is n = 1.5

Wavelength of the light incidence \lambda= 600 nm

We have to find the smallest thickness of the film so that there will be minimum light reflect

For minimum thickness of non reflecting film

t=\frac{\lambda }{4n} , here t is thickness, \lambda is wavelength and n is refractive index

Putting all values t=\frac{600}{4\times 1.5}=100nm

So minimum thickness will be 100 nm

8 0
3 years ago
A car travelling at 5.0 m/s starts to speed up. After 3.0 s its velocity has increased to 11 m/s. a) What is its acceleration? (
lions [1.4K]

initially, the car is traveling at 5.0 m/s.

so, we know acceleration for changing velocity is :

a = (v-v_{o})/t ..........(i)

where v is the final velocity

v_{o} is the initial velocity

t is the time taken to change velocity

Now, as per the question :

initial velocity, v_{o}=5.0 m/s

final velocity, v =11 m/s

time taken, t = 3 s

putting the values in equation (i),

a = ( 11-5 )/3

a = 2 m/s²

Therefore, a, after 3 s, is  <em>2 m/s².</em>

4 0
1 year ago
A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont
expeople1 [14]

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

4 0
3 years ago
When you hold a piece of chocolate in ypur hand, why does the chocolate melt?
dalvyx [7]
Because your hand is warm and the warmness melts the chocolate...
7 0
3 years ago
Read 2 more answers
Other questions:
  • Draw a free-body diagram for the ear of a person properly wearing a mask. You may wish to refer to the figure
    13·1 answer
  • You drop a rock from rest out of a window on the top floor of a building, 25.0 m above the ground. When the rock has fallen 4.90
    12·1 answer
  • Determine if the data are qualitative, quantitative, or neither. Zinc is a silver-gray metal. Chlorine has a density of 3.2 g/L.
    13·2 answers
  • Your 64-cm-diameter car tire is rotating at 3.5 rev/s when suddenly you press down hard on the accelerator. After traveling 200
    6·1 answer
  • A zinc atom loses 3electron to become a zinc oin
    15·1 answer
  • What makes an atom an ion?
    7·1 answer
  • A particle's position along the x-axis is described by. x(t)= At+Bt^2where t is In seconds: x is in meters: and the constants A
    11·1 answer
  • An element located at the intersection of period 7 and group 2
    10·1 answer
  • For which planet is the length of the plants day longer than the planets year
    8·1 answer
  • On a 150 m straight sprint, a cyclist accelerates from rest for 4.5 s at 3.8 m/s2. How long will it take her to complete the 150
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!