According to Lawson's criterion, the outcome is determined by the product of ion density and confinement time because the temperature must be maintained for a sufficient confinement time and with a sufficient ion thickness to obtain a net gain of power from a fusion reaction.
<h3>What are
Lawson's criterion?</h3>
- The overall conditions that must be met in order to produce more energy than is required for plasma heating are usually expressed in terms of the product of ion density and confinement time, a condition known as Lawson's criterion.
- In nuclear fusion devices, confinement time is defined as the amount of time the plasma is kept at a temperature above the critical ignition temperature.
- Even at temperatures high enough to overcome the coulomb barrier to nuclear fusion, a critical density of ions must be maintained in order to achieve a net yield of energy from the reaction.
- Because the density required for a net energy yield is correlated with the confinement time for hot plasma, the minimum condition for a productive fusion reaction is typically stated in terms of the product of ion density and confinement time, which is known as Lawson's criterion.
To learn more about Lawson's criterion, refer:
brainly.com/question/28303495
#SPJ4
Answer:
The mechanical advantage of the system is 8
Explanation:
the mechanical advantage measures how much the system multiplies the input force to get the output.
In the given:
The input force (effort) is 20 Newton
The output force (load) is 160 Newton
This means that the mechanical advantage is:
mechanical advantage = load / effort = 160 / 20 = 8
Note that the mechanical advantage is unit-less (has no unit) since it is a ratio between two forces.
Hope this helps :)
The core of a star must be at the temperature of 10,000,000 degrees Celsius for hydrogen fusion to begin.
The force of gravity between the astronauts is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
are the masses of the two objects
r is the separation between them
In this problem, we have two astronauts, whose masses are:

While the separation between the astronauts is
r = 2 m
Substituting into the equation, we can find the gravitational force between the two astronauts:

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
The equation for percent error is
% Error =

Our experimental is 2.85g/cm^3 and the accepted is 2.7g/cm^3
Thus our % Error = 5.555%