Answer:
Explanation:
We shall take the help of vector form of displacement . Taking east as i and north as j
4.0m N = 4 j
7.5 m E = 7.5 i
6.8 m S = - 6.8 j
3.7 m E, = 3.7 i
3.6 m S = - 3.6 j
5.3 m W = - 5.3 i
3.7 m N, = 3.7 j
5.6 m W = - 5.6 i
4.4 m S = - 4.4 j
4.9 m W = - 4.9 i
Total displacement = 4j +7.5 i -6.8j+3.7i-3.6j-5.3i+3.7j-5.6i-4.4j-4.9i
= -4.6 i -7.1 j
magnitude of displacement = 
= 8.46 m
Direction
Tanθ = 7.1/ 4.6
θ = 57⁰ south of west .
distance walked = 4+7.5 +6.8+3.7+3.6+5.3+3.7+5.6+4.4+4.9
= 49.5 m
I believe the correct answer from the choices listed above is the last option. If the volatility of X is higher than that of Y, then <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also, the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
Answer:
20 m
Explanation:
Given:
v₀ = 15 m/s
v = -25 m/s
a = -10 m/s²
Find: Δy
v² = v₀² + 2aΔy
(-25 m/s)² = (15 m/s)² + 2 (-10 m/s²) Δy
Δy = 20 m

= (18 x 10^-6 /°C)(0.125 m)(100° C - 200 °C)
= -0.00225 m
New length = L + ΔL
= 1.25 m + (-0.00225 m)
= 1.248
D