Answer:
The answer is 13 however make sure if they ask for a certain measurement like meter answer it by saying 13 meters.
Explanation:
This basically turns into basic algebra if you know the formula for work. The formula for work is W=F*d
Here are the variables that you know 650J=50N*d so you need d.
All you do is divide 650J by 50N and you get a total of 13 (meters since I don't know what they want you to put it in).
Answer:
6 atm.
Explanation:
Let the mass of both be m
Then moles of He = m/ 4
Moles of Ne = m/ 20
mole fraction of He = Moles of He/ Total moles = m/4/ (m/4 + m/20) = 0.25 m/0.3m = 0.83
Pressure of He = Mole fraction×total pressure = 0.83 × 6 atm = 5 atm
Explanation:
Below is an attachment containing the solution.
Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
Answer: current I = 0.96 Ampere
Explanation:
Given that the
Resistance R = 60 Ω
Power = 55 W
Power is the product of current and voltage. That is
P = IV ...... (1)
But voltage V = IR. From ohms law.
Substitutes V in equation (1) power is now
P = I^2R
Substitute the above parameters into the formula to get current I
55 = 60 × I^2
Make I^2 the subject of formula
I^2 = 55/60
I^2 = 0.92
I = sqr(0.92)
I = 0.957 A
Therefore, 0.96 A current must be applied.