Answer:
A baseball (m= 149g) approaches a bat horizontally at a speed of 40.2 m/s (90 mi/h) and is hit straight back at a speed of 45.6m/s (102mi/h). If the ball is in contact with the bat for a time of 1.10ms, what is the average force exerted on the ball by the bat ? Neglect the weight of the ball, since it is so much less than the force of the bat. Choose the direction of the incoming ball as the positive direction.
Explanation:
Use the impulse equation (a form of Newton's 2nd Law): FΔt = Δ(mv) where Δ means "change in"
The change in momentum is mBB(vf - vi) = (.150 kg)(-46.9 m/s - 40.5 m/s)
Divide this by the time interval and you get F exerted by the bat in Newtons.
Take care.
Explanation:
C is correct.
Newton second law states that force is directly proportional to acceleration with m being the constant of variation.

So


A is wrong, the constant g only happens in free fall or in vertical direction
B and D are wrong due to the mathematical error or equation error
Please elaborate more on your question so I can help you
Answer:
Party, Birthday, Weddings, Nightclub, Just for fun
Explanation:
Its D. The warm air from the land moves towards the water