Answer:
the answer is the swecond option
Explanation:
Its b ur well come
Answer:
the hydrogen atom of one water molecule and the lone pair of electrons on an oxygen atom of a neighboring water molecule.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
Answer: 520.04 meters.
If you convert 350 yards to meters, you get 320.04.
320.04m + 200m = 520.04m.
Take off the .04 if necessary:)
<span>The molecular mass of sodium oxide (Na2O) is A. 61.97894. The molecular mass of a molecule (Mr) is the sum of atomic masses of its atoms (Ar). The molecular mass of sodium oxide is: Mr(Na2O) = 2 * Ar (Na) + Ar(O). From the periodic table, Ar(Na) = 22.989769 and Ar(O) = 15.9994. The molecular mass of sodium oxide is: Mr(Na2O) = 2 * 22.989769 + 15.9994 = 45.979538 + 15.9994 = 61.97894.</span>