Answer:
The group 15 elements: the pnicogens
Explanation:
The group 15 elements, nitrogen, phosphorus, arsenic, antimony and bismuth, all have the general valence shell electronic configuration ns2np3. They can all exist in the +3 or +5 oxidation state, with the +3 state increasing in stability as we move vertically down the group.
Answer:
The coefficient of Ca(OH)2 is 1
Explanation:
Step 1: unbalanced equation
Ca(OH)2 + HNO3 → Ca(NO3)2 + H2O
Step 2: Balancing the equation
On the right side we have 2x N (in Ca(NO3)2 ) and 1x N on the left side (in HNO3). To balance the amount of N on both sides, we have to multiply HNO3 by 2.
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + H2O
On the left side we have 4x H (2xH in Ca(OH)2 and 2x H in HNO3), on the right side we have 2x H (in H2O). To balance the amount of H on both sides, we have to multiply H2O on the right side, by 2.
Now the equationis balanced.
Ca(OH)2 + 2HNO3 = Ca(NO3)2 + 2H2O
The coefficient of Ca(OH)2 is 1
Answer:
its easy ask to chrome or search in yt ;)
When we increase the surface area of an object, more atoms are exposed. Since more atoms are exposed, the atoms can react faster, and this is why the rate of a reaction increases when the surface area increases.
For example, lets say we want to heat a potato. If we just put the whole potato in the microwave, it will take a long time for the potato to get thoroughly heated. However, if we chop the potato into smaller pieces, we will observe that it gets heated much faster. This is because we increased the surface area of the potato, which resulted in more potato atoms to be exposed to the heat, and caused the reaction to be faster.
Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.
That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.